欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Python算法的时间复杂度和空间复杂度(实例解析)

时间:2020-11-22 23:13:19|栏目:Python代码|点击:

算法复杂度分为时间复杂度和空间复杂度。

其作用:

时间复杂度是指执行算法所需要的计算工作量;
而空间复杂度是指执行这个算法所需要的内存空间。
(算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度)。

简单来说,时间复杂度指的是语句执行次数,空间复杂度指的是算法所占的存储空间

计算时间复杂度的方法:

  • 用常数1代替运行时间中的所有加法常数
  • 修改后的运行次数函数中,只保留最高阶项
  • 去除最高阶项的系数

时间复杂度

算法的时间复杂度是一个函数,它定量描述了该算法的运行时间,时间复杂度常用“O”表述,使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况

时间复杂度是用来估计算法运行时间的一个式子(单位),一般来说,时间复杂度高的算法比复杂度低的算法慢

print('Hello world') # O(1)
# O(1)
print('Hello World')
print('Hello Python')
print('Hello Algorithm')
for i in range(n): # O(n)
 print('Hello world')
for i in range(n): # O(n^2)
 for j in range(n):
 print('Hello world')
for i in range(n): # O(n^2)
 print('Hello World')
 for j in range(n):
 print('Hello World')
for i in range(n): # O(n^2)
 for j in range(i):
 print('Hello World')
for i in range(n):
 for j in range(n):
 for k in range(n):
  print('Hello World') # O(n^3)

 几次循环就是n的几次方的时间复杂度

n = 64
while n > 1:
 print(n)
 n = n // 2

 26 = 64,log264 = 6,所以循环减半的时间复杂度为O(log2n),即O(logn)

如果是循环减半的过程,时间复杂度为O(logn)或O(log2n)

常见的时间复杂度高低排序:O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(n2logn)<O(n3)

空间复杂度

空间复杂度:用来评估算法内存占用大小的一个式子

a = 'Python' # 空间复杂度为1
# 空间复杂度为1
a = 'Python'
b = 'PHP'
c = 'Java'
num = [1, 2, 3, 4, 5] # 空间复杂度为5
num = [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]] # 空间复杂度为5*4
num = [[[1, 2], [1, 2]], [[1, 2], [1, 2]] , [[1, 2], [1, 2]]] # 空间复杂度为3*2*2

 定义一个或多个变量,空间复杂度都是为1,列表的空间复杂度为列表的长度

总结

上一篇:详解Python修复遥感影像条带的两种方式

栏    目:Python代码

下一篇:浅谈python中的getattr函数 hasattr函数

本文标题:Python算法的时间复杂度和空间复杂度(实例解析)

本文地址:http://www.codeinn.net/misctech/25270.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有