欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Python Pandas 获取列匹配特定值的行的索引问题

时间:2020-11-18 01:12:03|栏目:Python代码|点击:

给定一个带有列"BoolCol"的DataFrame,如何找到满足条件"BoolCol" == True的DataFrame的索引

目前有迭代的方式来做到这一点:

for i in range(100,3000):
  if df.iloc[i]['BoolCol']== True:
     print i,df.iloc[i]['BoolCol']

这虽然可行,但不是标准的 Pandas 方式。经过一番研究,我目前正在使用这个代码:

df[df['BoolCol'] == True].index.tolist()

这个给了我一个索引列表,但跟我想要的不匹配,当检查:

df.iloc[i]['BoolCol']

其结果实际上是False!

如何使用正确的 Pandas 方式做到这一点?

最佳解决方法

df.iloc[i]返回df的第i行。 i不引用索引标签,i是从0开始的索引。

相反,属性index返回实际的索引标签,而不是数字row-indices:

df.index[df['BoolCol'] == True].tolist()

或者等同地,

df.index[df['BoolCol']].tolist()

通过使用带有"unusual"索引的DataFrame,可以非常清楚地看到差异:

df = pd.DataFrame({'BoolCol': [True, False, False, True, True]},
    index=[10,20,30,40,50])
In [53]: df
Out[53]: 
  BoolCol
10  True
20  False
30  False
40  True
50  True
[5 rows x 1 columns]
In [54]: df.index[df['BoolCol']].tolist()
Out[54]: [10, 40, 50]

如果你想使用索引,

In [56]: idx = df.index[df['BoolCol']]
In [57]: idx
Out[57]: Int64Index([10, 40, 50], dtype='int64')

那么您可以使用loc而不是iloc选择行:

In [58]: df.loc[idx]
Out[58]: 
  BoolCol
10  True
40  True
50  True

[3 rows x 1 columns]

请注意,loc也可以接受布尔数组:

In [55]: df.loc[df['BoolCol']]
Out[55]: 
  BoolCol
10  True
40  True
50  True

[3 rows x 1 columns]

如果您有一个布尔数组mask,并且需要序数索引值,则可以使用np.flatnonzero来计算它们:

In [110]: np.flatnonzero(df['BoolCol'])
Out[112]: array([0, 3, 4])

使用df.iloc按顺序索引选择行:

In [113]: df.iloc[np.flatnonzero(df['BoolCol'])]
Out[113]: 
  BoolCol
10  True
40  True
50  True
python pandas

参考文献

Python Pandas:  Get index of rows which column matches certain value

总结

上一篇:Python黑帽编程 3.4 跨越VLAN详解

栏    目:Python代码

下一篇:python+selenium+PhantomJS抓取网页动态加载内容

本文标题:Python Pandas 获取列匹配特定值的行的索引问题

本文地址:http://www.codeinn.net/misctech/23905.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有