欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

python多线程互斥锁与死锁

时间:2023-02-26 08:35:11|栏目:Python代码|点击:

一、多线程间的资源竞争

以下列task1()task2()两个函数为例,分别将对全局变量num加一重复一千万次循环(数据大一些,太小的话执行太快,达不到验证的效果)。

import threading
import time

num = 0


def task1(nums):
    global num
    for i in range(nums):
        num += 1

    print("task1---num=%d" % num)


def task2(nums):
    global num
    for i in range(nums):
        num += 1
    print("task2---num=%d" % num)


if __name__ == '__main__':
    nums = 10000000
    t1 = threading.Thread(target=task1, args=(nums,))
    t2 = threading.Thread(target=task2, args=(nums,))

    t1.start()
    t2.start()
    # 因为主线程不会等子线程执行完就会执行,所以这里延迟五秒,确保最后执行。
    time.sleep(5)
    print("main----num=%d" % num)

程序运行结果:

如图,输出结果比较混乱,既没有一千万,最终结果也不是二千万。因为多线程运行时出现了资源竞争,即可以理解为,每个函数运行的时间都不确定,且互相影响,
如从初始值0开始,假设t1的线程先执行,执行到+1后,此时的num=1还未存储,然后即被叫停,t2开始执行,去获取num,获取到的num等于初始值0,然后其执行了+1并存储,存储后num=1,然后t2停止t1继续,再次存储num=1。即加了两次1,但是num还是只等于1。
因为t1和t2谁来运行的分配是完全随机的,所以最后加了两千万次1后值是小于2000万的。

解决此类问题,可以使用到互斥锁 。

二、互斥锁

  • 某个线程要更改共享数据时,先将其锁定,此时资源的状态为"锁定",其他线程不能改变,只到该线程释放资源,将资源的状态变成"非锁定",其他的线程才能再次锁定该资源。
  • 互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。

1.互斥锁示例

创建一把锁:

mutex = threading.Lock()
mutex.acquire() # 上锁
xxxx锁定的内容xxxxx
mutex.release() # 解锁

将互斥锁加入到上边的代码中如下,则问题得到了解决。

import threading
import time

num = 0


def task1(nums):
    global num
    mutex.acquire()
    for i in range(nums):
        num += 1
    mutex.release()
    print("task1---num=%d" % num)


def task2(nums):
    global num
    mutex.acquire()
    for i in range(nums):
        num += 1
    mutex.release()
    print("task2---num=%d" % num)


if __name__ == '__main__':
    nums = 10000000
    mutex = threading.Lock()
    t1 = threading.Thread(target=task1, args=(nums,))
    t2 = threading.Thread(target=task2, args=(nums,))

    t1.start()
    t2.start()
    # 因为主线程不会等子线程执行完就会执行,所以这里延迟五秒,确保最后执行。
    time.sleep(5)
    print("main----num=%d" % num)

程序运行结果:

2.可重入锁与不可重入锁

threading.Lock()上的是不可重入锁,即一次只能加一把锁,不能加多把。

threading.Lock()

如果需要同时加多把所,则需加入不可重入锁

创建一把可重入锁:

mutex = threading.RLock()
mutex.acquire() # 上锁
mutex.acquire() # 再上锁
xxxx锁定的内容xxxxx
mutex.release() # 解锁
mutex.release() # 再解锁

其中上锁和解锁的次数必须保持一致。

三、死锁

在线程间共享多个资源的时候,如果两个线程分别占有一部分资源并且同时等待对方的资源,就会程序堵塞,造成死锁。

  • 死锁一般用不到。
  • 程序设计要尽量避免。

上一篇:Python实现将Excel内容批量导出为PDF文件

栏    目:Python代码

下一篇:python使用mediapiple+opencv识别视频人脸的实现

本文标题:python多线程互斥锁与死锁

本文地址:http://www.codeinn.net/misctech/226455.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有