欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

python中的Numpy二维数组遍历与二维数组切片后遍历效率比较

时间:2023-02-25 11:44:42|栏目:Python代码|点击:

python-numpy使用中,可以用双层 for循环对数组元素进行访问,也可以切片成每一行后进行一维数组的遍历。

代码如下:

import numpy as np
import time
NUM = 160


a=np.random.random((NUM,NUM))
start = time.time()
for i in range(NUM):
    for j in range(NUM):
        if a[i][j] == 1.0:
            pass
end1 =  time.time()

for ii in range(NUM):
    b = a[ii,:]
    for jj in range(NUM):
        if b[jj] == 1.0:
            pass 
end2 =  time.time()
print("end1",end1-start)
print("end2",end2-end1)

由于生成的是[0,1)中的数,因此两种操作会遍历所有的元素。多轮测试后,耗时如下:

当NUM为160时:

end1 0.006983518600463867
end2 0.003988742828369141

当NUM为1600时:

end1 0.71415114402771
end2 0.45178747177124023

结论:切片后遍历更快
原因:
楼主还暂不明确

一个想法:

b=a[ii,:]

在numpy中,为了提高效率,这种切片出来的子矩阵其实都是原矩阵的引用而已,所以改变子矩阵,原矩阵还是会变的
所以在内层循环中,第二种方法是在那一行元素所在的内存进行寻找。而第一种方法是先定位到行,再定位到列,所以比较慢?
大家是怎么想的呢?

关于numba在小数据量下的速度慢于普通操作

什么是numba?

numba

实验比较:

import numpy as np
import time
NUM = 160
from numba import jit
a=np.random.random((NUM,NUM))

@jit(nopython=True)
def fun1(a):
    for i in range(NUM):
        for j in range(NUM):
            if a[i][j] == 1.0:
                pass

def fun2(a):
    for i in range(NUM):
        for j in range(NUM):
            if a[i][j] == 1.0:
                pass
    
@jit(nopython=True)
def fun3(a):
    for ii in range(NUM):
        b = a[ii,:]
        for jj in range(NUM):
            if b[jj] == 1.0:
                pass 


def fun4(a):
    for iii in range(NUM):
        b = a[iii,:]
        for jjj in range(NUM):
            if b[jjj] == 1.0:
                pass 

start = time.time()
fun1(a)
end1 =  time.time()
fun2(a)
end2 =  time.time()
fun3(a)
end3 =  time.time()
fun4(a)
end4 =  time.time()
print("end1",end1-start)
print("end2",end2-end1)
print("end3",end3-end2)
print("end4",end4-end3)

首先,当NUM为1600时,结果如下:

end1 0.2991981506347656 #无切片,有加速
end2 0.6372940540313721 #无切片,无加速
end3 0.08377814292907715 #有切片,有加速
end4 0.358079195022583   #有切片,无加速

其他条件相同的情况下,有切片的速度更快。同样,有numba加速的也比没加速的快。
但当NUM =160时,结果如下:

end1 0.29620814323425293   #无切片,有加速
end2 0.006980180740356445  #无切片,无加速
end3 0.08580684661865234   #有切片,有加速
end4 0.0029993057250976562 #有切片,无加速

有切片依旧比无切片的快。但是有numba加速的却比没有numba加速的慢。
原来@jit(nopython=True)只是对函数进行修饰,第一次调用会进行编译,编译成机器码,之后速度就会很快。

实验代码如下:

import numpy as np
import time
NUM = 160
from numba import jit
a=np.random.random((NUM,NUM))

@jit(nopython=True)
def fun1(a):
    for i in range(NUM):
        for j in range(NUM):
            if a[i][j] == 1.0:
                pass

def fun2(a):
    for i in range(NUM):
        for j in range(NUM):
            if a[i][j] == 1.0:
                pass
    
@jit(nopython=True)
def fun3(a):
    for ii in range(NUM):
        b = a[ii,:]
        for jj in range(NUM):
            if b[jj] == 1.0:
                pass 


def fun4(a):
    for iii in range(NUM):
        b = a[iii,:]
        for jjj in range(NUM):
            if b[jjj] == 1.0:
                pass 

for b in range(4):
    start = time.time()
    fun1(a)
    end1 =  time.time()
    fun2(a)
    end2 =  time.time()
    fun3(a)
    end3 =  time.time()
    fun4(a)
    end4 =  time.time()
    print("end1",end1-start)
    print("end2",end2-end1)
    print("end3",end3-end2)
    print("end4",end4-end3)
    print("---")

结果如下:

end1 0.29421305656433105
end2 0.0059833526611328125
end3 0.08181905746459961
end4 0.0029909610748291016
---
end1 0.0
end2 0.005949735641479492
end3 0.0
end4 0.004008769989013672
---
end1 0.0
end2 0.006977558135986328
end3 0.0
end4 0.00399017333984375
---
end1 0.0
end2 0.005974292755126953
end3 0.0
end4 0.003837108612060547
---

结论:

numba加速时,第一次需要编译,需要耗时。之后调用就不需要了。

上一篇:Python机器学习应用之朴素贝叶斯篇

栏    目:Python代码

下一篇:Python实现线程池之线程安全队列

本文标题:python中的Numpy二维数组遍历与二维数组切片后遍历效率比较

本文地址:http://www.codeinn.net/misctech/226404.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有