欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Python深度学习pytorch神经网络多层感知机简洁实现

时间:2023-01-24 10:49:28|栏目:Python代码|点击:

我们可以通过高级API更简洁地实现多层感知机。

import torch
from torch import nn
from d2l import torch as d2l

模型

与softmax回归的简洁实现相比,唯一的区别是我们添加了2个全连接层。第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数。第二层是输出层。

net = nn.Sequential(nn.Flatten(),
					nn.Linear(784, 256),
					nn.ReLU(),
					nn.Linear(256, 10))
def init_weights(m):
	if type(m) == nn.Linear:
		nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights)

训练过程的实现与我们实现softmax回归时完全相同,这种模块化设计使我们能够将与和模型架构有关的内容独立出来。

batch_size, lr, num_epochs = 256, 0.1, 10    # 批量大小为256,学习率为0.1,类型为10
loss = nn.CrossEntropyLoss()    # 使用交叉熵损失函数
trainer = torch.optim.SGD(net.parameters(), lr=lr)    # 开始训练
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

在这里插入图片描述

上一篇:利用20行Python 代码实现加密通信

栏    目:Python代码

下一篇:python实现请求数据包签名

本文标题:Python深度学习pytorch神经网络多层感知机简洁实现

本文地址:http://www.codeinn.net/misctech/224354.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有