欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

pandas的排序、分组groupby及cumsum累计求和方式

时间:2023-01-14 11:32:03|栏目:Python代码|点击:

生成一列sum_age 对age 进行累加

df['sum_age'] = df['age'].cumsum()
print(df)

生成一列sum_age_new 按照 gender和is_good 对age进行累加

df['sum_age_new'] = df.groupby(['gender','is_good'])['age'].cumsum()
print(df)

 

根据不同的性别对年龄进行 等级 排序

df['rank_g'] = df.groupby(['gender'])['age'].rank()
print(df)

这里的 rank( ) 即 'rank_g' ,并不是按照1、2、3、4、、依次排

按照官方文档的意思,该函数是沿着某个轴来计算数值数据等级(1到n)。默认情况下,为相等的值分配同一个等级,该等级是这些值的等级的平均值。

例子:

import pandas as pd
obj = pd.Series([7,-5,7,4,2,0,4])
print(obj.rank())

代码对 [7, -5, 7, 4, 2, 0, 4] 进行从小到大地排序,很明显地,可以排成 [-5, 0, 2 ,4, 4, 7, 7],数值7有第6和第7两个位置,那应该排序应该排到第几级?根据官方文档,取平均值,(6+7)/2=6.5,所以两个7的等级都为6.5,同理可得两个4的等级都为(4+5)/2=4.5。

输出:

0    6.5
1    1.0
2    6.5
3    4.5
4    3.0
5    2.0
6    4.5
dtype: float64

对数据排序之后,分组,并累计求和

# 对Start Time进行排序,Connection Type分组,temp进行累计求和cumsum
wsw_1 = wsw.sort_values(['Start Time'])
wsw_1.loc[:, 'Connection Number'] = wsw_1.groupby(['Connection Type'])['temp'].cumsum()

这里如果不对start time排序,Connection Number不会按时间顺序,统计drilling、tripping 的number数

pandas分组排序功能

在一个班级里,学生考试科目有语文、数学、英语,分别有对应的成绩。

现在,想要列出每个科目班级的前五名的情况,要求包含科目、姓名、成绩、名次。

通过以下代码实现:

import pandas as pd
a=['小红','小绿','小蓝','小白','小青','小紫','小粉','小傻','小红','小绿','小蓝','小白','小青','小紫','小粉','小傻','小红','小绿','小蓝','小白','小青','小紫','小粉','小傻']
b=['语文','语文','语文','语文','语文','语文','语文','语文','数学','数学','数学','数学','数学','数学','数学','数学','英语','英语','英语','英语','英语','英语','英语','英语']
c=[97,65,23,43,67,23,55,98,56,45,67,78,98,45,87,65,67,23,55,98,56,45,67,78]
len(a),len(b),len(c)
df=pd.DataFrame({'name':a,'kemu':b,'score':c})
df2=df.sort_values(['kemu','score','name'], ascending=[1, 0,1])
df2['rn']=df2.groupby(['kemu']).rank(method='first',ascending =0)['score']
df2[df2['rn']<=5]
''''

上一篇:python读取json数据还原表格批量转换成html

栏    目:Python代码

下一篇:解决Python 遍历字典时删除元素报异常的问题

本文标题:pandas的排序、分组groupby及cumsum累计求和方式

本文地址:http://www.codeinn.net/misctech/223625.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有