Pytorch中torch.flatten()和torch.nn.Flatten()实例详解
时间:2022-12-16 09:31:13|栏目:Python代码|点击: 次
torch.flatten(x)等于torch.flatten(x,0)默认将张量拉成一维的向量,也就是说从第一维开始平坦化,torch.flatten(x,1)代表从第二维开始平坦化。
import torch x=torch.randn(2,4,2) print(x) z=torch.flatten(x) print(z) w=torch.flatten(x,1) print(w) 输出为: tensor([[[-0.9814, 0.8251], [ 0.8197, -1.0426], [-0.8185, -1.3367], [-0.6293, 0.6714]], [[-0.5973, -0.0944], [ 0.3720, 0.0672], [ 0.2681, 1.8025], [-0.0606, 0.4855]]]) tensor([-0.9814, 0.8251, 0.8197, -1.0426, -0.8185, -1.3367, -0.6293, 0.6714, -0.5973, -0.0944, 0.3720, 0.0672, 0.2681, 1.8025, -0.0606, 0.4855]) tensor([[-0.9814, 0.8251, 0.8197, -1.0426, -0.8185, -1.3367, -0.6293, 0.6714] , [-0.5973, -0.0944, 0.3720, 0.0672, 0.2681, 1.8025, -0.0606, 0.4855] ])
torch.flatten(x,0,1)代表在第一维和第二维之间平坦化
import torch x=torch.randn(2,4,2) print(x) w=torch.flatten(x,0,1) #第一维长度2,第二维长度为4,平坦化后长度为2*4 print(w.shape) print(w) 输出为: tensor([[[-0.5523, -0.1132], [-2.2659, -0.0316], [ 0.1372, -0.8486], [-0.3593, -0.2622]], [[-0.9130, 1.0038], [-0.3996, 0.4934], [ 1.7269, 0.8215], [ 0.1207, -0.9590]]]) torch.Size([8, 2]) tensor([[-0.5523, -0.1132], [-2.2659, -0.0316], [ 0.1372, -0.8486], [-0.3593, -0.2622], [-0.9130, 1.0038], [-0.3996, 0.4934], [ 1.7269, 0.8215], [ 0.1207, -0.9590]])
对于torch.nn.Flatten(),因为其被用在神经网络中,输入为一批数据,第一维为batch,通常要把一个数据拉成一维,而不是将一批数据拉为一维。所以torch.nn.Flatten()默认从第二维开始平坦化。
import torch #随机32个通道为1的5*5的图 x=torch.randn(32,1,5,5) model=torch.nn.Sequential( #输入通道为1,输出通道为6,3*3的卷积核,步长为1,padding=1 torch.nn.Conv2d(1,6,3,1,1), torch.nn.Flatten() ) output=model(x) print(output.shape) # 6*(7-3+1)*(7-3+1) 输出为: torch.Size([32, 150])
总结
栏 目:Python代码
本文标题:Pytorch中torch.flatten()和torch.nn.Flatten()实例详解
本文地址:http://www.codeinn.net/misctech/221475.html