欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

如何利用python正确地为图像添加高斯噪声

时间:2022-11-30 10:59:09|栏目:Python代码|点击:

开门见山,直接使用 skimage 库为图像添加高斯噪声是很简单的:

import skimage

origin = skimage.io.imread("./lena.png")
noisy = skimage.util.random_noise(origin, mode='gaussian', var=0.01)

但是如果不用库函数而自己实现的话,有几个问题是值得注意的。

彩图 or 灰度图

读取图片时,图片可能是有三通道的RGB图片,也有可能是单通道的灰度图,甚至四通道的RGBA图。

通道数不同会影响图像数据的 shape ,例如: (256, 256, 3) 、(256, 256)

很多人按照MATLAB的习惯,使用 np.random.randn 来生成高斯噪声,则需要根据通道数调整参数。

# RGB
noise = sigma * np.random.randn(256, 256, 3)
# GRAY
noise = sigma * np.random.randn(256, 256)

为了通用的处理,最好使用 np.random.normal 生成高斯噪声。

noise = np.random.normal(mean, var ** 0.5, image.shape)

前两个参数分别为 均值和标准差,第三个参数为生成数据的 shape,直接将图像本身shape输入进去,更加优雅。

uint8 or float64

一般遇到的图像都是8bit的,用skimage或opencv读取后会发现数据类型是uint8的ndarray,取值范围是 [0, 255] 。

如果手贱直接在整型数据上添加高斯噪声,如:

image = io.imread("lena.png")
noise = np.random.normal(0, 10, image.shape)
noisy = image + noise

你会发现 plt.imshow 出来的是一片空白,或者有零星几个噪点。

以一个像素为例分析原因:

  • 图像本身是[0, 255]的整数:[226 137 125]
  • 生成的噪声是浮点数:[-2.92864248 4.04786763 12.23436435]
  • 相加后最后的数据:[223.07135752 141.04786763 137.23436435]

matplotlib 的 imshow 要求输入是 (0-1 float or 0-255 int),所以上述不伦不类的数据是无法正确显示的(只显示了恰好落在0-1之间的像素)。

int or float

在很多应用中,为了方便计算,都会将图像数据转换为浮点数,float64,取值范围为 [0, 1]

为了转换数据类型,最简单的方式是直接除以255:

image = io.imread("./lena.png")
print(image.dtype)					# uint8

image = image/255
print(image.dtype)					# float64

更稳妥的做法,可以使用skimage的img_to_float()

image = img_as_float(image)

这样再添加高斯噪声就可以正确显示。

方差 or 标准差

高斯噪声符合一个均值为0,方差为 σ 2 \sigma^2 σ2 的高斯分布。

均值为0,是保证图像的亮度不会有变化,而方差大小则决定了高斯噪声的强度。

方差/标准差越大,噪声越强。

这里有一点点初中数学的细节,就是在[0, 1]区间内, y = x y=\sqrt{x} y=x ? 比 y = x y=x y=x 要大。

sqrtx

所以,设置方差为0.1,噪声要比设置标准差为0.1大不少。注意不要用混了就可以。

sigma

是否截断(clip)

由于需要把噪声叠加到原图像中,因此叠加后的数据值就可能超出对应数据类型的取值范围

如果用matplotlib显示超出范围的彩色图像,则可能遇到以下提示:

Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

matplotlib自动将图片做了截断。

而不知为何,matplotlib并不会自动对灰度图进行截断,例如:

clip

叠加噪声之后,图片数据的最小值和最大值分别为 -0.32 和 1.25,这明显超过了[0, 1]的范围。

这样显示出的图片是不正确的(中间图像),更像是重新将图像缩放到了[0, 1]范围内,就像将色阶向外扩了一样,对比度也下降了。

使用 np.clip,将图像截断到 [0, 1]之间,如右图所示,图像明显正常了很多。

总结

完整的代码如下:

from skimage import io, img_as_float
import numpy as np

mean = 0
var = 0.01

image = io.imread("./lena.png")

image = img_as_float(image)
noise = np.random.normal(mean, var**0.5, image.shape)
noisy = image + noise
noisy = np.clip(noisy, 0.0, 1.0)

当然,上述问题在 skimage.util.random_noise 中都已解决,工程中可以直接使用。

import skimage

origin = skimage.io.imread("./lena.png")
noisy = skimage.util.random_noise(origin, mode='gaussian', var=0.01)

推荐学习skimage的源码

参考

https://zhuanlan.zhihu.com/p/50820267

https://www.jb51.net/article/241120.htm

https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.imshow.html

https://github.com/scikit-image/scikit-image/blob/v0.17.2/skimage/util/noise.py#L8

上一篇:Python容器使用的5个技巧和2个误区总结

栏    目:Python代码

下一篇:Python数据可视化之Seaborn的使用详解

本文标题:如何利用python正确地为图像添加高斯噪声

本文地址:http://www.codeinn.net/misctech/220270.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有