欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

关于Torch torchvision Python版本对应关系说明

时间:2022-11-22 10:56:30|栏目:Python代码|点击:

1. torch- torchvision- python版本对应关系

2. CUDA Toolkit 和PyTorch的对应关系

仅供参考

3. 安装说明

3.1 用anaconda安装pytorch

anaconda新建虚拟环境后,直接在pytorch官网官网链接找到“Install”按钮。这里一键搞定torch,torchvision,cudatoolkit等等。

  • 前提需要安装好NVIDIA驱动。
  • 不需要另外安装CUDA(笔者在没有单独安装CUDA情况下,成功运行了torch-gpu)。
  • 和机器已经装好的CUDA不发生冲突。
  • anaconda会自动对应torch,torchvision,cudatoolkit等的版本。
  • 这里一般下载最新的torch版本。

原因是anaconda将torch,torchvision,cudatoolkit等等都集成在虚拟环境里,统一管理依赖包。

如图所示

有镜像源的情况下,去掉末尾的“-c pytorch”会更快,否则经常容易下载超时。conda下载超时时长可以设置。

conda config --show
conda config --set remote_connect_timeout_secs 40
conda config --set remote_read_timeout_secs 100
conda config --show		#查看conda设置
conda config --set 		#设置对应的参数

3.2 不用Anaconda来管理环境

仔细对照torch、torchvision、cuda之间的对应关系,还有NVIDIA和CUDA版本的关系。

3.3 对NVIDIA驱动的要求

和NVIDIA驱动直接关联的是CUDA的版本。

如果安装的是CUDA=10.0.130,那么在Windows系统要求NVIDIA驱动大于411.31,不需要严格等于411.31

如果小于411.31,则会报错显示驱动版本过旧。

笔者是将NVIDIA驱动更新至最大456.38,正常使用。

3.4 下载 .whl 文件离线安装

https://download.pytorch.org/whl/torch_stable.html

根据前面的对应关系,下载好适合你的版本的 torch 、torchvision。

cu102 # 表示CUDA=10.2
cp37 # 表示python=3.7
linux or win 

下载好后,用pip安装,先cd 到下载的文件夹

pip install torch-1.7.0+cu101-cp36-cp36m-win_amd64.whl
pip install torchvision-0.8.0-cp36-cp36m-win_amd64.whl

测试GPU版本的torch是否安装成功

(torch) D:\MyData\xiaCN\Desktop\Work\unbiased> python
Python 3.6.13 (default, Feb 19 2021, 05:17:09) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
True

上一篇:利用Python实现批量下载上市公司财务报表

栏    目:Python代码

下一篇:python中format函数与round函数的区别

本文标题:关于Torch torchvision Python版本对应关系说明

本文地址:http://www.codeinn.net/misctech/219582.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有