python中leastsq函数的使用方法
时间:2022-11-02 11:00:38|栏目:Python代码|点击: 次
leastsq作用:最小化一组方程的平方和。
参数设置:
func
误差函数x0
初始化的参数args
其他的额外参数
举个例子:
首先创建样本点
import numpy as np import scipy as sp from scipy.optimize import leastsq import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus']=False x=[1,2,3,4] y=[2,3,4,5]
拟合直线
def y_pre(p,x): f=np.poly1d(p) return f(x)
其中的np.polyld
f=np.poly1d([1,2,3]) # x^2+2x+3 f(1) """ 6 """
误差函数
def error(p,x,y): return y-y_pre(p,x)
接下就简单了
p=[1,2] # 值随便写 # y=w1*x+w2 res=leastsq(error,p,args=(x,y)) w1,w2=res[0] # res[0]中就是wi的参数列表 """ 到这w1和w2就已经求出来了,下面是画图看一下 """ x_=np.linspace(1,10,100) # 等差数列, y_p=w1*x_+w2 # 求出的拟合曲线 plt.scatter(x,y) # 样本点 plt.plot(x_,y_p) # 画拟合曲线
可以直接封装成函数
x=np.linspace(0,2,10) y=np.sin(np.pi*x) # 原始的样本 y_=[y + np.random.normal(0,0.1) for y in y] # np.random.normal(loc,scale,size):正态分布的均值,正态分布的标准差,形状 # np.random.randn() # 标准正态分布是以0为均数、以1为标准差的正态分布,记为N(0,1) def fit(M=1): p=np.random.rand(M+1) # 返回一个或一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1) res=leastsq(error,p,args=(x,y)) # wi 的值 x_point=np.linspace(0,2,100) # 增加数据量为了画出的图平滑 y_point=np.sin(np.pi*x_point) # 增加数据量为了画出的图平滑 plt.plot(x_point,y_point,'r',label='原始') plt.plot(x_point,y_pre(res[0],x_point),'b',label='拟合') plt.scatter(x,y_) plt.legend() fit(3)
你也可以输出一下中间的结果:
x=np.linspace(0,2,10) y=np.sin(np.pi*x) # 原始的样本 y_=[y + np.random.normal(0,0.1) for y in y] # np.random.normal(loc,scale,size):正态分布的均值,正态分布的标准差,形状 # np.random.randn() # 标准正态分布是以0为均数、以1为标准差的正态分布,记为N(0,1) def fit(M=1): p=np.random.rand(M+1) # 返回一个或一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1) res=leastsq(error,p,args=(x,y)) # wi 的值 x_point=np.linspace(0,2,100) y_point=np.sin(np.pi*x_point) plt.plot(x_point,y_point,'r',label='原始') plt.plot(x_point,y_pre(res[0],x_point),'b',label='拟合') print(res[0]) plt.scatter(x,y_) plt.legend() fit(3)
拟合的直线就是:
上一篇:Pytorch深度学习经典卷积神经网络resnet模块训练
栏 目:Python代码
下一篇:Python实现自定义异常实例
本文地址:http://www.codeinn.net/misctech/217973.html