欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

pandas选择或添加列生成新的DataFrame操作示例

时间:2022-10-30 11:09:06|栏目:Python代码|点击:

如何向 pandas.DataFrame 添加新的列或行

通过指定新的列名/行名来添加,或者用pandas.DataFrame的assign()、insert()、append()方法添加等方法。

这里,将描述以下内容。

将列添加到 pandas.DataFrame

  • 通过指定新列名添加
  • 用assign()方法添加/分配
  • 用insert()方法添加到任意位置
  • 使用 concat() 函数水平连接 Series 和 DataFrame

向pandas.DataFrame 添加一行

  • 通过指定新行名称添加
  • 用append()方法添加
  • 使用 concat() 函数垂直连接 Series 和 DataFrame
  • 转置然后使用assign()、insert()方法

选择某些列

import pandas as pd
# 从Excel中读取数据,生成DataFrame数据
# 导入Excel路径和sheet name
df = pd.read_excel(excelName, sheet_name=sheetName)
# 读取某些列,生成新的DataFrame
newDf = pd.DataFrame(df, columns=[column1, column2, column3])

选择某些列和行

# 读取某些列,并根据某个列的值筛选行
newDf = pd.DataFrame(df, columns=[column1, column2, column3])[(df.column1 == value1) & (df.column2 == value2)]

添加新的列

# 第一种直接赋值
df["newColumn"] = newValue
# 第二种用concat组合两个DataFrame
pd.concat([oldDf, newDf])

更改某一列的值

# 第一种,replace
df["column1"] = df["column1"].replace(oldValue, newValue)
# 第二种,map
df["column1"] = df["column1"].map({oldValue: newValue})
# 第三种,loc
# 将column2 中某些行(通过column1中的value1来过滤出来的)的值为value2
df.loc[df["column1"] == value1, "column2"] = value2

补全缺失值

# fillna填充缺失值
df["column1"] = df["column1"].fillna(value1)

上一篇:python使用sessions模拟登录淘宝的方式

栏    目:Python代码

下一篇:没有了

本文标题:pandas选择或添加列生成新的DataFrame操作示例

本文地址:http://www.codeinn.net/misctech/217746.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有