欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

PyTorch加载数据集梯度下降优化

时间:2022-10-16 11:25:04|栏目:Python代码|点击:

一、实现过程

1、准备数据

PyTorch实现多维度特征输入的逻辑回归的方法不同的是:本文使用DataLoader方法,并继承DataSet抽象类,可实现对数据集进行mini_batch梯度下降优化。

代码如下:

import torch
import numpy as np
from torch.utils.data import Dataset,DataLoader

class DiabetesDataSet(Dataset):
    def __init__(self, filepath):
        xy = np.loadtxt(filepath,delimiter=',',dtype=np.float32)
        self.len = xy.shape[0]
        self.x_data = torch.from_numpy(xy[:,:-1])
        self.y_data = torch.from_numpy(xy[:,[-1]])
        
    def __getitem__(self, index):
        return self.x_data[index],self.y_data[index]
    
    def __len__(self):
        return self.len

dataset = DiabetesDataSet('G:/datasets/diabetes/diabetes.csv')
train_loader = DataLoader(dataset=dataset,batch_size=32,shuffle=True,num_workers=0)

2、设计模型

class Model(torch.nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        self.linear1 = torch.nn.Linear(8,6)
        self.linear2 = torch.nn.Linear(6,4)
        self.linear3 = torch.nn.Linear(4,1)
        self.activate = torch.nn.Sigmoid()
    
    def forward(self, x):
        x = self.activate(self.linear1(x))
        x = self.activate(self.linear2(x))
        x = self.activate(self.linear3(x))
        return x
model = Model()

3、构造损失函数和优化器

criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(),lr=0.1)

4、训练过程

每次拿出mini_batch个样本进行训练,代码如下:

epoch_list = []
loss_list = []
for epoch in range(100):
    count = 0
    loss1 = 0
    for i, data in enumerate(train_loader,0):
        # 1.Prepare data
        inputs, labels = data
        # 2.Forward
        y_pred = model(inputs)
        loss = criterion(y_pred,labels)
        print(epoch,i,loss.item())
        count += 1
        loss1 += loss.item()
        # 3.Backward
        optimizer.zero_grad()
        loss.backward()
        # 4.Update
        optimizer.step()
        
    epoch_list.append(epoch)
    loss_list.append(loss1/count)

5、结果展示

plt.plot(epoch_list,loss_list,'b')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.grid()
plt.show()

二、参考文献

上一篇:Python Tkinter Menu控件使用详解

栏    目:Python代码

下一篇:没有了

本文标题:PyTorch加载数据集梯度下降优化

本文地址:http://www.codeinn.net/misctech/216530.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有