欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

解决Ubuntu18中的pycharm不能调用tensorflow-gpu的问题

时间:2022-10-10 12:52:05|栏目:Python代码|点击:

问题描述:我通过控制台使用tensorflow-gpu没问题,但是通过pycharm使用却不可以,如下所示:

通过控制台:

answer@answer-desktop:/$ python
Python 3.7.0 (default, Jun 28 2018, 13:15:42) 
[GCC 7.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
2020-02-04 21:37:12.964610: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libnvinfer.so.6: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.1/lib64:/usr/local/cuda-10.1/lib64
2020-02-04 21:37:12.964749: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.1/lib64:/usr/local/cuda-10.1/lib64
2020-02-04 21:37:12.964777: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
>>> print(tf.test.is_gpu_available())
WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2020-02-04 21:37:37.267421: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 1795795000 Hz
2020-02-04 21:37:37.268461: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55913b67a840 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-02-04 21:37:37.268516: I tensorflow/compiler/xla/service/service.cc:176]  StreamExecutor device (0): Host, Default Version
2020-02-04 21:37:37.272139: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2020-02-04 21:37:37.481038: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.481712: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55913b6eb960 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2020-02-04 21:37:37.481755: I tensorflow/compiler/xla/service/service.cc:176]  StreamExecutor device (0): GeForce GTX 1060 3GB, Compute Capability 6.1
2020-02-04 21:37:37.482022: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.482528: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties: 
pciBusID: 0000:03:00.0 name: GeForce GTX 1060 3GB computeCapability: 6.1
coreClock: 1.7085GHz coreCount: 9 deviceMemorySize: 5.93GiB deviceMemoryBandwidth: 178.99GiB/s
2020-02-04 21:37:37.482953: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-02-04 21:37:37.485492: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-02-04 21:37:37.487486: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2020-02-04 21:37:37.487927: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2020-02-04 21:37:37.490469: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2020-02-04 21:37:37.491950: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2020-02-04 21:37:37.499031: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-02-04 21:37:37.499301: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.500387: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.500847: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
2020-02-04 21:37:37.500941: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-02-04 21:37:37.502172: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1096] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-02-04 21:37:37.502212: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102]   0 
2020-02-04 21:37:37.502229: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] 0:  N 
2020-02-04 21:37:37.502436: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.503003: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.503593: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1241] Created TensorFlow device (/device:GPU:0 with 2934 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 3GB, pci bus id: 0000:03:00.0, compute capability: 6.1)
True
>>>

返回的True,说明可以

通过pycharm却不行,如下图,返回False

解决办法:

1.修改~/.bashrc

将pycahrm的路径加到环境中,示例如下:

alias pycharm="bash /home/answer/文档/pycharm-professional-2019.3.2/pycharm-2019.3.2/bin/pycharm.sh"

刷新生效:

source ~/.bashrc

2.修改pycharm中的环境变量

选择pycharm 菜单栏Run ――> Run-Edit Configurations ――> Environment variables――> 将cuda的路径加进去 例如:LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64

在运行就可以了

上一篇:基于PyQt5制作一个windows通知管理器

栏    目:Python代码

下一篇:python语法 range() 序列类型range

本文标题:解决Ubuntu18中的pycharm不能调用tensorflow-gpu的问题

本文地址:http://www.codeinn.net/misctech/215977.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有