欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

对python sklearn one-hot编码详解

时间:2020-11-11 11:57:59|栏目:Python代码|点击:

one-hot编码的作用

使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点

将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

sklearn的一个例子

from sklearn import preprocessing

enc = preprocessing.OneHotEncoder()

enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
print(enc.n_values_)//每个特征对应的最大位数

print(enc.transform([[0,1,3]]).toarray())

print(enc.transform([[0,1,1]]).toarray())

上面代码enc.fit()里有一个4行3列的矩阵

1、每一列对应于一个样本的特征序列,即一个样本有三个特征

2、4行表明传入了4个样本

3、观察每一列的值可以知道:第一个特征有两个取值0,1;第二个特征有三个取值0,1,2;第三个特征有4个取值0,1,2,3

4、所以第一个特征的one-hot编码是一个两位的01串,第二个特征是一个三位的01串,第三个特征是一个4位的01串

上一篇:python傅里叶变换FFT绘制频谱图

栏    目:Python代码

下一篇:Python实现Event回调机制的方法

本文标题:对python sklearn one-hot编码详解

本文地址:http://www.codeinn.net/misctech/21582.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有