欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Tensorflow中使用cpu和gpu有什么区别

时间:2022-10-03 11:34:02|栏目:Python代码|点击:

使用cpu和gpu的区别

在Tensorflow中使用gpu和cpu是有很大的差别的。在小数据集的情况下,cpu和gpu的性能差别不大。

不过在大数据集的情况下,cpu的时间显著增加,而gpu变化并不明显。

不过,我的笔记本电脑的风扇终于全功率运行了。

import tensorflow as tf
import timeit
import numpy as np
import matplotlib.pyplot as plt
def cpu_run(num):
  with tf.device('/cpu:0'):
    cpu_a=tf.random.normal([1,num])
    cpu_b=tf.random.normal([num,1])
    c=tf.matmul(cpu_a,cpu_b)
  return c
def gpu_run(num):
  with tf.device('/gpu:0'):
    gpu_a=tf.random.normal([1,num])
    gpu_b=tf.random.normal([num,1])
    c=tf.matmul(gpu_a,gpu_b)
  return c
k=10
m=7
cpu_result=np.arange(m,dtype=np.float32)
gpu_result=np.arange(m,dtype=np.float32)
x_time=np.arange(m)
for i in range(m):
  k=k*10
  x_time[i]=k
  cpu_str='cpu_run('+str(k)+')'
  gpu_str='gpu_run('+str(k)+')'
  #print(cpu_str)
  cpu_time=timeit.timeit(cpu_str,'from __main__ import cpu_run',number=10)
  gpu_time=timeit.timeit(gpu_str,'from __main__ import gpu_run',number=10)
  # 正式计算10次,取平均时间
  cpu_time=timeit.timeit(cpu_str,'from __main__ import cpu_run',number=10)
  gpu_time=timeit.timeit(gpu_str,'from __main__ import gpu_run',number=10)
  cpu_result[i]=cpu_time
  gpu_result[i]=gpu_time
print(cpu_result)
print(gpu_result)
fig, ax = plt.subplots()
ax.set_xscale("log")
ax.set_adjustable("datalim")
ax.plot(x_time,cpu_result)
ax.plot(x_time,gpu_result)
ax.grid()
plt.draw()
plt.show()

在这里插入图片描述

蓝线是cpu的耗时,而红线是gpu的耗时。

一些术语的比较(tensorflow和pytorch/cpu和gpu/)

tensorflow和pytorch

  • pytorch是一个动态框架,tensorflow是一个静态框架。
  • tensorflow是一个静态框架体现在:需要先构建一个tensorflow的计算图,构建好之后这样的一个计算图是不能变的,然后再传入不同的数据进去进行计算。
  • 这种静态框架带来的问题是:固定了计算的流程,势必带来不灵活性,如果要改变计算的逻辑或者是随着时间变化的计算逻辑,这样的动态计算tensorflow是是无法实现的。
  • pytorch是一个动态框架,和python的逻辑一样,对变量做任何操作都是灵活的。
  • 一个好的框架需要具备三点:(1)对大的计算图能方便的实现(2)能自动求变量的导数(3)能简单的运行在GPU上。这三点pytorch都可以达到
  • tensorflow在gpu上的分布式计算更为出色,在数据量巨大的时候效率比pytorch要高。企业很多都是用的tensorflow,pytorch在学术科研上使用多些。
  • pytorch包括三个层次:tensor/variable/module。tensor即张量的意思,由于是矩阵的运算,所以适合在矩阵上跑。variable就是tensor的封装,封装的目的就是为了能够保存住该variable在整个计算图中的位置,能够知道计算图中各个变量之间的相互依赖关系,这样就能够反向求梯度。module是一个更高的层次,是一个神经网络的层次,可以直接调用全连接层、卷积层等神经网络。

cpu和gpu

  • cpu更少的核,但是单个核的计算能力很强
  • gpu:更多的核,每个核的计算能力不如cpu,所以更适合做并行计算,如矩阵计算,深度学习就是很多的矩阵计算。

cuda

  • 直接写cuda代码就类似写汇编语言
  • 比cuda高级的是cudnn
  • 比cudnn高级的是用框架tensorflow/caffe/pytorch

上一篇:Python中itertools模块的使用教程详解

栏    目:Python代码

下一篇:Python导入模块包原理及相关注意事项

本文标题:Tensorflow中使用cpu和gpu有什么区别

本文地址:http://www.codeinn.net/misctech/215371.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有