欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Python数据分析之 Pandas Dataframe应用自定义

时间:2022-09-29 11:06:08|栏目:Python代码|点击:

前言:

在进行数据分析时,难免需要对数据集应用一些我们自定义的一些函数,或者其他库的函数,得到我们想要的数据,这种情况下,可能大家第一时间想到的是使用for循环遍历Dataframe对象,取到指定行/列的数据再进行自定义函数的应用,当然这种方法完全可以实现,但是效率不高,接下来就来介绍一下在Pandas中如何对数据集高效的进行自定义函数的应用。

应用函数

apply 方法

apply()函数是一个自定义函数作用于某一行或几行,或者某一列或多列上的每一个元素, 使用格式如下:

df.apply(func, axis=0, *args, **kwargs)

参数如下:

  • func:指定函数
  • axis:指定作用于行还是列,默认为0,表示作用于列,设置为1表示作用于行
  • *args&**kwargs:接收任意数量、类型的参数,这些参数被传递到函数func

例如,对下面Dataframe执行进行操作:

自定义"返回最大值"的函数并作用于该Dataframe:

def func(x):
    return x.max()
df.apply(func)

结果输出如下:

可见,结果返回了每列最大的值,如果想返回每行最大的值,设置axis=1即可。

当然apply()也支持传递lambda匿名函数。

applymap 方法

applymap()函数可以作用于DataFrame中的每一个元素,例如,转换DataFrame中数据的格式:

df.applymap(lambda x: '%.2f' % x)

注意:Pandas还提供了一个map()方法,作用于Series对象,此类方法和Python原生的map()方法都很类似。

上一篇:Python实现双X轴双Y轴绘图的示例详解

栏    目:Python代码

下一篇:pandas实现一行拆分成多行

本文标题:Python数据分析之 Pandas Dataframe应用自定义

本文地址:http://www.codeinn.net/misctech/215007.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有