欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Python曲线平滑的实现示例

时间:2022-08-27 09:39:20|栏目:Python代码|点击:

在编写测试程序的时候,由于数据帧数多的原因,导致生成的曲线图比较难看,如下图:

在这里插入图片描述

由于高频某些点的波动导致高频曲线非常难看,因此需要对曲线做平滑处理,让曲线过渡更平滑。对曲线进行平滑处理,这里推荐使用Savitzky-Golay 滤波器,可以在scipy库里直接调用,不需要再定义函数。

Python中 Savitzky-Golay 滤波器调用如下:

tmp_smooth = scipy.signal.savgol_filter(tmp,53,3)

scipy函数解释:
scipy.signal.savgol_filter(x, window_length, polyorder, deriv=0, delta=1.0, axis=-1, mode=‘interp’, cval=0.0)[source]
Apply a Savitzky-Golay filter to an array.
This is a 1-d filter. If x has dimension greater than 1, axis determines the axis along which the filter is applied.

在scipy函数解释中,x为原始数据,即上面代码中的tmp数据。window_length是窗口长度,该值需为正奇整数。polyorder为对窗口内的数据点进行k阶多项式拟合,k的值需要小于window_length。

现在看一下window_length和k这两个值对曲线的影响。

(1) 首先是window_length对曲线的平滑作用,代码如下:

tmp_smooth1 = scipy.signal.savgol_filter(tmp,21,3)
tmp_smooth2 = scipy.signal.savgol_filter(tmp,53,3)

plt.semilogx(f,tmp*0.5,label = 'mic'+str(num+1))
plt.semilogx(f,tmp_smooth1*0.5,label = 'mic'+str(num+1)+'拟合曲线-21',color = 'red')
plt.semilogx(f,tmp_smooth2*0.5,label = 'mic'+str(num+1)+'拟合曲线-53',color = 'green')

在这里插入图片描述

可以看到,window_length的值越小,曲线越贴近真实曲线;window_length值越大,平滑效果越厉害。

(2) 再看k值对曲线的影响,代码如下:

tmp_smooth1 = scipy.signal.savgol_filter(tmp,21,3)
tmp_smooth2 = scipy.signal.savgol_filter(tmp,53,3)

plt.semilogx(f,tmp*0.5,label = 'mic'+str(num+1))
plt.semilogx(f,tmp_smooth1*0.5,label = 'mic'+str(num+1)+'拟合曲线-21',color = 'red')
plt.semilogx(f,tmp_smooth2*0.5,label = 'mic'+str(num+1)+'拟合曲线-53',color = 'green')

生成曲线图如下:

在这里插入图片描述

可以看到,k值越大,曲线越贴近真实曲线;k值越小,曲线平滑越厉害。另外,当k值较大时,受窗口长度限制,拟合会出现问题,高频曲线会变成直线,如下图所示:

在这里插入图片描述

参考资源

[1] python 平滑_Python 生成曲线进行快速平滑处理
[2] Savitzky-Golay平滑滤波的python实现

上一篇:Python Pandas数据分析之iloc和loc的用法详解

栏    目:Python代码

下一篇:基于Matplotlib 调用 pyplot 模块中 figure() 函数处理 figure图形对象

本文标题:Python曲线平滑的实现示例

本文地址:http://www.codeinn.net/misctech/212004.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有