欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Pandas实现数据拼接的操作方法详解

时间:2022-08-25 10:22:31|栏目:Python代码|点击:

数据科学领域日常使用 Python 处理大规模数据集的时候经常需要使用到合并、链接的方式进行数据集的整合,其中应用的数据类型包括 Series 和 DataFrame,可以使用的方法也很多,比如本文中介绍的 .merge()、 .join() 和 .concat() 三种方法,进行拼接处理后的数据集可以发挥最大的用途。

merge 操作

.merge() 方法是用于组合通用列或索引上的数据,这个方法有点类似于 MySQL 中的 join 操作,可以实现左拼接、右拼接、全连接等操作。

通过关键字的索引进行拼接,实现多对一、一对多、多对多(笛卡尔乘积)连接。

merge 中参数解释:

  • how:定义合并方式,选择参数有 『inner』,『outer』, 『left’』,『right』。
  • on:定义2个 DataFrame 中都必须包含的列用于连接(索引键)。
  • left_on 和 right_on:指定要合并的左侧或右侧对象中存在的列或索引。
  • left_index 和 right_index:默认为 False,设置为以索引列作为合并基准。
  • suffixes:字符串元组,用于附加到不是合并键的相同列名。

merge 拼接方式

一张图就能看明白不同关键字参数 merger 的方式。

merge 举例

数据读取

我们要进行势力所属和人物直接关系的拼接操作,读取的数据包括下面的2个列表,并将 人物历史登入数据 中没有势力的数据剔除。

import pandas as pd
country  = pd.read_excel("Romance of the Three Kingdoms 13/势力列表.xlsx")
people = pd.read_excel("Romance of the Three Kingdoms 13/人物历史登入数据.xlsx")

# 剔除不包含的势力数据,即武将在野的状态
people = people[people["勢力"]!="-"]

country.head()

people.head()

内部联接

使用 merge 默认参数可以直接进行内部连接,匹配两个DataFrame交集的结果。

将人物和所属势力进行一个拼接,这里我们取的是这个人物最终归属的势力,即改人物数据聚合后的最后一条数据信息。

people_new = people.groupby('名前').nth(-1)
people_new["名前"] = people_new.index
people_new.reset_index(drop=True,inplace=True)
people_new

merge 中DataFrame的顺序决定了拼接结果的顺序。

inner_merged_total = pd.merge(country,people_new,on=["勢力"])
inner_merged_total.head()

inner_merged_total = pd.merge(people_new,country,on=["勢力"])
inner_merged_total.head()

外连接

外连接(也称为完全外连接)中,来自两个 DataFrame 的所有行都将出现在新的 DataFrame 中。

本质上对于数据全的 df_A 和包含的 df_B 进行 outer 拼接,相当于 pd.merge(df_A ,df_B,on=[“key”])

outer_merged = pd.merge(people_new,country,how="outer",on=["勢力"])
outer_merged.head()

如果我们不剔除在野武将的数据的话会发现是整张表单进行拼接。

country  = pd.read_excel("Romance of the Three Kingdoms 13/势力列表.xlsx")
people = pd.read_excel("Romance of the Three Kingdoms 13/人物历史登入数据.xlsx")
outer_merged = pd.merge(people_new,country,how="outer",on=["勢力"])
outer_merged

左连接

新合并的 DataFrame 与左侧 DataFrame 中的所有行一起保留(即merge中的第一个dataframe),同时丢弃右侧 DataFrame 中在左侧 DataFrame 的键列中没有匹配的行。

left_merged = pd.merge(people_new,country,how="left",on=["勢力"])
left_merged

右连接

新合并的 DataFrame 与右侧 DataFrame 中的所有行一起保留(即merge中的第二个dataframe),同时丢弃右侧 DataFrame 中在左侧 DataFrame 的键列中没有匹配的行。

right_merged = pd.merge(people_new,country,how="right",on=["勢力"])
right_merged 

join 操作

join 操作和 merge 很相似,是在列或索引上组合数据,join 相当于指定了 merge 中的第一个 DataFreme 。并且命名冲突的列可以定义后缀进行重新命名。

这个结果和之前的左右 merger 很相似。

join 中参数解释:

  • other:定义要拼接的 DataFrame。
  • on:指定左侧 DataFrame 的可选列或索引名称。如果设置为 None,这是默认 index 连接。
  • how:与 merge 中的 how 具有相同,如果不指定列则使用索引拼接。
  • lsuffix 和 rsuffix:类似 merge() 中的后缀。
  • sort:对生成后的 DataFrame 进行排序。

join 举例

people_new.join(country, lsuffix="left", rsuffix="right")

仅仅是index的横向拼接。

concat 操作

concat 操作起来就比较灵活,可以进行横向的拼接操作,也可以进行纵向的拼接操作。

纵向拼接操作

横拼接操作

concat 中参数解释:

  • objs:要连接的任何数据对象。可以是List,Serices,DataFrame,Dict 等等。
  • axis:连接的轴。默认值为0(行轴),1(纵直)连接。
  • join:类似于 merger 中的 how 参数,只接受值 inner 或 outer 。
  • ignore_index:默认为False。True 为设置新的组合数据集将不会保留 axis 参数中指定的轴中的原始索引值。
  • keys:构建分层索引,用于查询不同的行来自的原始数据集。
  • copy:是否要复制源数据,默认值为True。

concat 举例

我们使用三国的宝物数据来观察,数据 74 行。

import pandas as pd
items  = pd.read_excel("Romance of the Three Kingdoms 13/道具列表.xlsx")
items.head()

横向拼接后,保持数据最大行数 74。

pd.concat([items, items], axis=1)

纵向拼接后,最大行数变成 74 的 2倍。

pd.concat([items, items], axis=0)

append 举例

append 也是 DataFrame 数据进行拼接的有效方式,方式同 concat 的纵向拼接,返回的结果需要对变量重新定义才能生效。

注意下面2个 append 行数的区别

items.append(items)
items

items = items.append(items)
items

上一篇:Python与Appium实现手机APP自动化测试的示例代码

栏    目:Python代码

下一篇:Python实现的建造者模式示例

本文标题:Pandas实现数据拼接的操作方法详解

本文地址:http://www.codeinn.net/misctech/211805.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有