欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Python缺失值处理方法

时间:2022-08-22 09:22:06|栏目:Python代码|点击:

前言:

前面python重复值处理得方法我们讲了重复值是怎么处理的,今天就来说说缺失值。缺失值主要分为机械原因和人为原因。机械原因就是存储器坏了,机器故障等等原因导致某段时间未能收集到数据。人为原因的情况种类就更多了,如刻意隐瞒等等。

先构建一个含有缺失值的DataFrame,如下:

import pandas as pd
import numpy as np
data = pd.DataFrame([[1,np.nan,3],[np.nan,5,np.nan]],columns = ['a','b','c'])
print(data)

看出来了吗?np.nan就是NAN值,空值的意思。

在numpy中有一个函数可以用来查看空值,不对,是两个,isnull()和isna()这两函数。

我们分别来试试它们的效果:

import pandas as pd
import numpy as np
data = pd.DataFrame([[1,np.nan,3],[np.nan,5,np.nan]],columns = ['a','b','c'])
data.isnull()
data.isna()

可以看出,这两函数的作用就是判断数据是不是空值,如果是,就返回true,不是就是false。

通常,对空值的处理有两种方法,一种就是把空值删除,另外一种就是把它填上,我们先说第一种,删除空值,我们可以dropna()这一函数来把空值删除。要注意,它会把含有空值的整行都删掉。例如:

import pandas as pd
import numpy as np
data = pd.DataFrame([[1,np.nan,3],[np.nan,5,np.nan]],columns = ['a','b','c'])
data.dropna()

上面的例子用了drop函数后,啥都没啦! 

我们可以设置当每行空值多余2个时再删除(低于2个保留),这时候要用到dropna()的参数thresh。

补充空值的话有挺多的方法,有用均值补充,中位数补充等,我们要用到fillna()这一函数。例如,我们用均值来填充上文中的data,

代码如下:

import pandas as pd
import numpy as np
data = pd.DataFrame([[1,np.nan,3],[np.nan,5,np.nan]],columns = ['a','b','c'])
data.fillna(data.mean())

代码运行的结果如下,可以看到空值都被对应列的均值所填充。

上一篇:php memcached的实例用法详解

栏    目:Python代码

下一篇:Python实现从文件中加载数据的方法详解

本文标题:Python缺失值处理方法

本文地址:http://www.codeinn.net/misctech/211493.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有