欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

OpenCV半小时掌握基本操作之高斯双边

时间:2022-08-13 12:18:37|栏目:Python代码|点击:

【OpenCV】 ⚠️高手勿入! 半小时学会基本操作 ⚠️ 高斯双边

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天带大家用 OpenCV 来实现一个简单的磨皮.

在这里插入图片描述

边缘保留滤波 (EPF)

边缘保留滤波 (Edge Preserving Filter) 是图像处理的一种技术. 有别与传统滤波, EPF 会对差别较大的像素区域进行区分, 在保持边缘锐利的同时消除噪声或纹理.

高斯双边

双边滤波 (Bilateral Filter) 即高斯滤波. 滤波器由两个函数构成. 一个函数是由集合空间距离决定滤波器系数. 另一个是由像素差值决定滤波系数.

在这里插入图片描述

格式:

cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace, dst=None, borderType=None)

参数:

  • src: 输入图像
  • d: 相邻像素的直径
  • sigmaColor: 颜色空间过滤
  • sigmaSpace: 坐标空间过滤

例子:

import numpy as np
import cv2

# 读取图片
image = cv2.imread("face.jpg")

# 高斯二边
dest = cv2.bilateralFilter(image, 0, 100, 15)

# 图片展示
combine = np.hstack((image, dest))
cv2.imshow("combine", combine)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 保存结果
cv2.imwrite("bilateral.jpg", combine)

输出结果:

在这里插入图片描述

高斯模糊 vs 高斯双边:

在这里插入图片描述

均值迁移

均值迁移 (Mean-Shift Blur) 会计算得到像素均值与空间位置均值, 使用新的均值作为窗口中心位置.

格式:

cv2.pyrMeanShiftFiltering(src, sp, sr, dst=None, maxLevel=None, termcrit=None)

参数:

  • src: 输入图像
  • sp: 空间窗口半径
  • sr: 颜色窗口半径
  • maxLevel: 分割金字塔的最大级别
  • termcrit: 终止条件, 默认为 None

例子:

import numpy as np
import cv2

# 读取图片
image = cv2.imread("face.jpg")

# 均值迁移
dest = cv2.pyrMeanShiftFiltering(image, 10, 50)

# 图片展示
combine = np.hstack((image, dest))
cv2.imshow("combine", combine)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 图片保存
cv2.imwrite("mean_shift.jpg", combine)

输出结果:

在这里插入图片描述

上一篇:Django视图类型总结

栏    目:Python代码

下一篇:Python 专题五 列表基础知识(二维list排序、获取下标和处理txt文本实例)

本文标题:OpenCV半小时掌握基本操作之高斯双边

本文地址:http://www.codeinn.net/misctech/210699.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有