欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Python查询缺失值的4种方法总结

时间:2022-07-26 10:03:38|栏目:Python代码|点击:

在我们日常接触到的Python中,狭义的缺失值一般指DataFrame中的NaN。广义的话,可以分为三种。

  • 缺失值:在Pandas中的缺失值有三种:np.nan (Not a Number) 、 None 和 pd.NaT(时间格式的空值,注意大小写不能错)
  • 空值:空值在Pandas中指的是空字符串"";
  • 最后一类是导入的Excel等文件中,原本用于表示缺失值的字符“-”、“?”等。

今天聊聊Python中查询缺失值的4种方法。

缺失值 NaN ①

在Pandas中查询缺失值,最常用的?法就是isnull(),返回True表示此处为缺失值。

我们可以将其与any()?法搭配使用来查询存在缺失值的行,也可以与sum()?法搭配使用来查询存在缺失值的列。

  • isnull():对于缺失值,返回True;对于?缺失值,返回False。
  • any():?个序列中有?个True,则返回True,否则返回False。
  • sum():对序列进行求和计算。

在交互式环境中输入如下命令:

df.isnull()

输出:

图片

在交互式环境中输入如下命令:

df.isnull().any(axis=1)

输出:

图片

在交互式环境中输入如下命令:

df.isnull().sum()

输出:

图片

注:isna()和isnull()的用法是相同的,这里不再演示

缺失值 NaN ②

由于在Pandas中isnull()方法返回True表示此处为缺失值,所以我们可以对数据集进行切片也可实现找到缺失值。

在交互式环境中输入如下命令:

df[df.isnull().values==True]

输出:

图片

注意:如果某行有多个值是空值,则会重复次数出现,所以我们可以利用df[df.isnull().values==True].drop_duplicates()来去重。

另外,notnull()方法是与isnull()相对应的,使用它可以直接查询非缺失值的数据行。

df[df["A列"].notnull()]

输出:

图片

空值

空值在Pandas中指的是空字符串"",我们同样可以对数据集进行切片找到空值。

在交互式环境中输入如下命令:

df[df["B列"] == ""]

输出:

图片

此外,也可以利用空值与正常值的区别来区分两者,比如isnumeric()方法检测字符串是否只由数字组成。

在交互式环境中输入如下命令:

df[df["B列"].str.isnumeric() == False ]

输出:

图片

如上所示,同样查询到了数据集中的空值。

字符“-”、“?”等

很多时候,我们要处理的是本地的历史数据文件,在这些Excel中往往并不规范,比如它们有可能会使用“*”、“?”、“—”、“!”等等字符来表示缺失值。

对于这类文本,我们可以使用正则表达式来匹配缺失值。

import re
df[df["C列"].apply(lambda x: len(re.findall('NA|[*|?|!|#|-]', x)) != 0)]

输出:

图片

如上所示,我自定义了匿名函数lambda,作用是在文本列的每一行中查找以下文本值:“NA”、“*”、“?” 、“!” 、“#”、“-”,并检查它找到的列表的长度。如果列表不为零,则表示找到了代表缺失值的字符,因此该行中至少有一个缺失值。

df[df["D列"].apply(lambda x: len(re.findall('NA|[*|?|!|#|-]', x)) != 0)]

输出:

图片

我们可以对不同列都进行同样的缺失值查询,另外也可以根据自己的实际情况,替换正则表达式中代表缺失值的字符。

上一篇:详解python的集合set的函数

栏    目:Python代码

下一篇:Linux下Pycharm、Anaconda环境配置及使用踩坑

本文标题:Python查询缺失值的4种方法总结

本文地址:http://www.codeinn.net/misctech/208968.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有