欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

python 包之 multiprocessing 多进程

时间:2022-07-19 10:18:27|栏目:Python代码|点击:

一、创建一个进程

  • 实例化 Process 类创建一个进程对象
  • 然后调用它的 start 方法即可生成一个子进程
from multiprocessing import Process

def func(s):
print(s)

if __name__ == '__main__':
p = Process(target=func, args=('autofelix', ))
p.start()
p.join()

二、创建多个进程

from multiprocessing import Process

def func(s):
print(s)

if __name__ == '__main__':
process = [
Process(target=func, args=('1', ))
Process(target=func, args=('2', ))
]

[p.start() for p in process]
[p.join() for p in process]

三、管道pipe进行进程间通信

Pipe(duplex=True):表示双工通信,也就是双向的,既可以接受也可以发送数据,默认为True

Pipe(duplex=False):表示单工通信,也就是单向的,只能进行接受或者发送数据

from multiprocessing import Process, Pipe

def func(conn):
print('send a list object ot other side...')
# 从管道对象的一端发送数据对象
conn.send(['33', 44, None])
conn.close()

if __name__ == '__main__':
# 默认创建一个双工管道对象,返回的两个对象代表管道的两端,
# 双工表示两端的对象都可以发送和接收数据,但是需要注意,
# 需要避免多个进程或线程从一端同时读或写数据
parent_conn, child_conn = Pipe()
p = Process(target=func, args=(child_conn, ))
p.start()
# 从管道的另一端接收数据对象
print(parent_conn.recv())
p.join()

四、队列Queue进行进程间通信

  • 当向队列中放入的数据较大时,就会在join()处卡死
  • 为了避免这种情况,常的做法是先使用get()将数据取出来,再使用join()方法
  • 如果不这样处理,队列进程将不能正常终止,造成死锁情况
from multiprocessing import Process, Queue

def func(q):
  print('put a list object to queue...')
  # 向Queue对象中添加一个对象
  q.put(['33', 44, None])

if __name__ == '__main__':
  # 创建一个队列
  q = Queue()
  p = Process(target=func, args=(q, ))
  p.start()
  # 从Queue对象中获取一个对象
  print(q.get())
  p.join()
-----------------------------------
?著作权归作者所有:来自51CTO博客作者autofelix的原创作品,谢绝转载,否则将追究法律责任
python 包之 multiprocessing 多进程教程
https://blog.51cto.com/autofelix/5166197

五、进程间同步

  • 使用锁保证进程间的同步操作
from multiprocessing import Process, Lock

def func(lc, num):
# 使用锁保证以下代码同一时间只有一个进程在执行
lc.acquire()
print('process num: ', num)
lc.release()

if __name__ == '__main__':
lock = Lock()
for i in range(5):
Process(target=func, args=(lock, i)).start()

六、进程间共享数据

  • 使用共享内存的方式,共享值Value对象和数据Array对象
from multiprocessing import Process, Value, Array

def func(n, a):
n.value = 3.333
for i in range(len(a)):
a[i] = -a[i]

if __name__ == '__main__':
# 第一个参数d表示数据类型'double'双精度浮点类型
num = Value('d', 0.0)
# 第一个参数i表示数据类型'integer'整型
arr = Array('i', range(6))
p = Process(target=func, args=(num, arr))
p.start()
p.join()
print(num.value)
print(arr[:])

七、进程池

  • 创建一个 Pool 进程池对象,并执行提交给它的任务
  • 进程池对象允许其中的进程以不同的方式运行
  • 但是需要注意,Pool 对象的方法只能是创建它的进程才能调用
from multiprocessing import Pool
import time

def f(x):
return x * x

if __name__ == '__main__':
with Pool(processes=4) as pool: # start 4 worker processes
# 在进程池中开启一个新的进程并执行 f 函数
result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously in a single process
print(result.get(timeout=1)) # prints "100" unless your computer is *very* slow

# map会一直阻塞当前进程直到运行完可迭代对象中的所有元素,并返回结果。
print(pool.map(f, range(10))) # prints "[0, 1, 4,..., 81]"

# imap是map方法的延迟执行版本,对于比较消耗内存的迭代,建议使用这个方法,
it = pool.imap(f, range(10))
print(next(it)) # prints "0"
print(next(it)) # prints "1"
print(it.next(timeout=1)) # prints "4" unless your computer is *very* slow

result = pool.apply_async(time.sleep, (10,))
print(result.get(timeout=1)) # raises multiprocessing.TimeoutError

上一篇:python读取nc数据并绘图的方法实例

栏    目:Python代码

下一篇:python中的opencv和PIL(pillow)转化操作

本文标题:python 包之 multiprocessing 多进程

本文地址:http://www.codeinn.net/misctech/208289.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有