五个Pandas 实战案例带你分析操作数据
大家好,之前分享过很多关于 Pandas 的文章,今天我给大家分享5个小而美的 Pandas 实战案例。
内容主要分为:
- 如何自行模拟数据
- 多种数据处理方式
- 数据统计与可视化
- 用户RFM模型
- 用户复购周期
构建数据
本案例中用的数据是小编自行模拟的,主要包含两个数据:订单数据和水果信息数据,并且会将两份数据合并
import pandas as pd import numpy as np import random from datetime import * import time import plotly.express as px import plotly.graph_objects as go import plotly as py # 绘制子图 from plotly.subplots import make_subplots
1、时间字段
2、水果和用户
3、生成订单数据
order = pd.DataFrame({ "time":time_range, # 下单时间 "fruit":fruit_list, # 水果名称 "name":name_list, # 顾客名 # 购买量 "kilogram":np.random.choice(list(range(50,100)), size=len(time_range),replace=True) }) order
4、生成水果的信息数据
infortmation = pd.DataFrame({ "fruit":fruits, "price":[3.8, 8.9, 12.8, 6.8, 15.8, 4.9, 5.8, 7], "region":["华南","华北","西北","华中","西北","华南","华北","华中"] }) infortmation
5、数据合并
将订单信息和水果信息直接合并成一个完整的DataFrame,这个df就是接下来处理的数据
6、生成新的字段:订单金额
到这里你可以学到:
- 如何生成时间相关的数据
- 如何从列表(可迭代对象)中生成随机数据
- Pandas的DataFrame自行创建,包含生成新字段
- Pandas数据合并
分析维度1:时间
2019-2021年每月销量走势
1、先把年份和月份提取出来:
df["year"] = df["time"].dt.year df["month"] = df["time"].dt.month # 同时提取年份和月份 df["year_month"] = df["time"].dt.strftime('%Y%m') df
2、查看字段类型:
3、分年月统计并展示:
# 分年月统计销量 df1 = df.groupby(["year_month"])["kilogram"].sum().reset_index() fig = px.bar(df1,x="year_month",y="kilogram",color="kilogram") fig.update_layout(xaxis_tickangle=45) # 倾斜角度 fig.show()
2019-2021销售额走势
df2 = df.groupby(["year_month"])["amount"].sum().reset_index() df2["amount"] = df2["amount"].apply(lambda x:round(x,2)) fig = go.Figure() fig.add_trace(go.Scatter( # x=df2["year_month"], y=df2["amount"], mode='lines+markers', # mode模式选择 name='lines')) # 名字 fig.update_layout(xaxis_tickangle=45) # 倾斜角度 fig.show()
年度销量、销售额和平均销售额
分析维度2:商品
水果年度销量占比
df4 = df.groupby(["year","fruit"]).agg({"kilogram":"sum","amount":"sum"}).reset_index() df4["year"] = df4["year"].astype(str) df4["amount"] = df4["amount"].apply(lambda x: round(x,2)) from plotly.subplots import make_subplots import plotly.graph_objects as go fig = make_subplots( rows=1, cols=3, subplot_titles=["2019年","2020年","2021年"], specs=[[{"type": "domain"}, # 通过type来指定类型 {"type": "domain"}, {"type": "domain"}]] ) years = df4["year"].unique().tolist() for i, year in enumerate(years): name = df4[df4["year"] == year].fruit value = df4[df4["year"] == year].kilogram fig.add_traces(go.Pie(labels=name, values=value ), rows=1,cols=i+1 ) fig.update_traces( textposition='inside', # 'inside','outside','auto','none' textinfo='percent+label', insidetextorientation='radial', # horizontal、radial、tangential hole=.3, hoverinfo="label+percent+name" ) fig.show()
各水果年度销售金额对比
years = df4["year"].unique().tolist() for _, year in enumerate(years): df5 = df4[df4["year"]==year] fig = go.Figure(go.Treemap( labels = df5["fruit"].tolist(), parents = df5["year"].tolist(), values = df5["amount"].tolist(), textinfo = "label+value+percent root" )) fig.show()
商品月度销量变化
fig = px.bar(df5,x="year_month",y="amount",color="fruit") fig.update_layout(xaxis_tickangle=45) # 倾斜角度 fig.show()
折线图展示的变化:
分析维度3:地区
不同地区的销量
不同地区年度平均销售额
df7 = df.groupby(["year","region"])["amount"].mean().reset_index()
分析维度4:用户
用户订单量、金额对比
df8 = df.groupby(["name"]).agg({"time":"count","amount":"sum"}).reset_index().rename(columns={"time":"order_number"}) df8.style.background_gradient(cmap="Spectral_r")
用户水果喜好
根据每个用户对每种水果的订单量和订单金额来分析:
df9 = df.groupby(["name","fruit"]).agg({"time":"count","amount":"sum"}).reset_index().rename(columns={"time":"number"}) df10 = df9.sort_values(["name","number","amount"],ascending=[True,False,False]) df10.style.bar(subset=["number","amount"],color="#a97fcf")
px.bar(df10, x="fruit", y="amount", # color="number", facet_col="name" )
用户分层—RFM模型
RFM模型是衡量客户价值和创利能力的重要工具和手段。
通过这个模型能够反映一个用户的交期交易行为、交易的总体频率和总交易金额3项指标,通过3个指标来描述该客户的价值状况;同时依据这三项指标将客户划分为8类客户价值:
- Recency(R)是客户最近一次购买日期距离现在的天数,这个指标与分析的时间点有关,因此是变动的。理论上客户越是在近期发生购买行为,就越有可能复购
- Frequency(F)指的是客户发生购买行为的次数–最常购买的消费者,忠诚度也就较高。增加顾客购买的次数意味着能占有更多的时长份额。
- Monetary value(M)是客户购买花费的总金额。
下面通过Pandas的多个方法来分别求解这个3个指标,首先是F和M:每位客户的订单次数和总金额
如何求解R指标呢?
1、先求解每个订单和当前时间的差值
2、根据每个用户的这个差值R来进行升序排列,排在第一位的那条数据就是他最近购买记录:以xiaoming用户为例,最近一次是12月15号,和当前时间的差值是25天
3、根据用户去重,保留第一条数据,这样便得到每个用户的R指标:
4、数据合并得到3个指标:
当数据量足够大,用户足够多的时候,就可以只用RFM模型来将用户分成8个类型
用户复购周期分析
复购周期是用户每两次购买之间的时间间隔:以xiaoming用户为例,前2次的复购周期分别是4天和22天
下面是求解每个用户复购周期的过程:
1、每个用户的购买时间升序
2、将时间移动一个单位:
3、合并后的差值:
出现空值是每个用户的第一条记录之前是没有数据,后面直接删除了空值部分
直接取出天数的数值部分:
5、复购周期对比
px.bar(df16, x="day", y="name", orientation="h", color="day", color_continuous_scale="spectral" # purples )
上图中矩形越窄表示间隔越小;每个用户整个复购周期由整个矩形长度决定。查看每个用户的整体复购周期之和与平均复购周期:
得到一个结论:Michk和Mike两个用户整体的复购周期是比较长的,长期来看是忠诚的用户;而且从平均复购周期来看,相对较低,说明在短时间内复购活跃。
从下面的小提琴中同样可以观察到,Michk和Mike的复购周期分布最为集中。
上一篇:Python中字符串对象语法分享
栏 目:Python代码
下一篇:详解Python中的GIL(全局解释器锁)详解及解决GIL的几种方案
本文地址:http://www.codeinn.net/misctech/207845.html