python基于ID3思想的决策树
时间:2022-07-13 08:28:11|栏目:Python代码|点击: 次
这是一个判断海洋生物数据是否是鱼类而构建的基于ID3思想的决策树,供大家参考,具体内容如下
# coding=utf-8 import operator from math import log import time def createDataSet(): dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no'], [0,0,'maybe']] labels = ['no surfaceing', 'flippers'] return dataSet, labels # 计算香农熵 def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCounts = {} for feaVec in dataSet: currentLabel = feaVec[-1] if currentLabel not in labelCounts: labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key]) / numEntries shannonEnt -= prob * log(prob, 2) return shannonEnt def splitDataSet(dataSet, axis, value): retDataSet = [] for featVec in dataSet: if featVec[axis] == value: reducedFeatVec = featVec[:axis] reducedFeatVec.extend(featVec[axis + 1:]) retDataSet.append(reducedFeatVec) return retDataSet def chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0]) - 1 # 因为数据集的最后一项是标签 baseEntropy = calcShannonEnt(dataSet) bestInfoGain = 0.0 bestFeature = -1 for i in range(numFeatures): featList = [example[i] for example in dataSet] uniqueVals = set(featList) newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) prob = len(subDataSet) / float(len(dataSet)) newEntropy += prob * calcShannonEnt(subDataSet) infoGain = baseEntropy - newEntropy if infoGain > bestInfoGain: bestInfoGain = infoGain bestFeature = i return bestFeature # 因为我们递归构建决策树是根据属性的消耗进行计算的,所以可能会存在最后属性用完了,但是分类 # 还是没有算完,这时候就会采用多数表决的方式计算节点分类 def majorityCnt(classList): classCount = {} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] += 1 return max(classCount) def createTree(dataSet, labels): classList = [example[-1] for example in dataSet] if classList.count(classList[0]) == len(classList): # 类别相同则停止划分 return classList[0] if len(dataSet[0]) == 1: # 所有特征已经用完 return majorityCnt(classList) bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatLabel = labels[bestFeat] myTree = {bestFeatLabel: {}} del (labels[bestFeat]) featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:] # 为了不改变原始列表的内容复制了一下 myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels) return myTree def main(): data, label = createDataSet() t1 = time.clock() myTree = createTree(data, label) t2 = time.clock() print myTree print 'execute for ', t2 - t1 if __name__ == '__main__': main()
最后我们测试一下这个脚本即可,如果想把这个生成的决策树用图像画出来,也只是在需要在脚本里面定义一个plottree的函数即可。
上一篇:python神经网络ShuffleNetV2模型复现详解
栏 目:Python代码
本文标题:python基于ID3思想的决策树
本文地址:http://www.codeinn.net/misctech/207690.html