欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

pytorch cnn 识别手写的字实现自建图片数据

时间:2022-07-09 09:35:51|栏目:Python代码|点击:

本文主要介绍了pytorch cnn 识别手写的字实现自建图片数据,分享给大家,具体如下:

# library
# standard library
import os 
# third-party library
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
import torchvision
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
# torch.manual_seed(1)  # reproducible 
# Hyper Parameters
EPOCH = 1        # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 50
LR = 0.001       # learning rate 
 
root = "./mnist/raw/"
 
def default_loader(path):
  # return Image.open(path).convert('RGB')
  return Image.open(path)
 
class MyDataset(Dataset):
  def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
    fh = open(txt, 'r')
    imgs = []
    for line in fh:
      line = line.strip('\n')
      line = line.rstrip()
      words = line.split()
      imgs.append((words[0], int(words[1])))
    self.imgs = imgs
    self.transform = transform
    self.target_transform = target_transform
    self.loader = loader
    fh.close()
  def __getitem__(self, index):
    fn, label = self.imgs[index]
    img = self.loader(fn)
    img = Image.fromarray(np.array(img), mode='L')
    if self.transform is not None:
      img = self.transform(img)
    return img,label
  def __len__(self):
    return len(self.imgs)
 
train_data = MyDataset(txt= root + 'train.txt', transform = torchvision.transforms.ToTensor())
train_loader = DataLoader(dataset = train_data, batch_size=BATCH_SIZE, shuffle=True)
 
test_data = MyDataset(txt= root + 'test.txt', transform = torchvision.transforms.ToTensor())
test_loader = DataLoader(dataset = test_data, batch_size=BATCH_SIZE)
 
class CNN(nn.Module):
  def __init__(self):
    super(CNN, self).__init__()
    self.conv1 = nn.Sequential(     # input shape (1, 28, 28)
      nn.Conv2d(
        in_channels=1,       # input height
        out_channels=16,      # n_filters
        kernel_size=5,       # filter size
        stride=1,          # filter movement/step
        padding=2,         # if want same width and length of this image after con2d, padding=(kernel_size-1)/2 if stride=1
      ),               # output shape (16, 28, 28)
      nn.ReLU(),           # activation
      nn.MaxPool2d(kernel_size=2),  # choose max value in 2x2 area, output shape (16, 14, 14)
    )
    self.conv2 = nn.Sequential(     # input shape (16, 14, 14)
      nn.Conv2d(16, 32, 5, 1, 2),   # output shape (32, 14, 14)
      nn.ReLU(),           # activation
      nn.MaxPool2d(2),        # output shape (32, 7, 7)
    )
    self.out = nn.Linear(32 * 7 * 7, 10)  # fully connected layer, output 10 classes
 
  def forward(self, x):
    x = self.conv1(x)
    x = self.conv2(x)
    x = x.view(x.size(0), -1)      # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
    output = self.out(x)
    return output, x  # return x for visualization 
cnn = CNN()
print(cnn) # net architecture
 
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)  # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss()            # the target label is not one-hotted 
 
# training and testing
for epoch in range(EPOCH):
  for step, (x, y) in enumerate(train_loader):  # gives batch data, normalize x when iterate train_loader
    b_x = Variable(x)  # batch x
    b_y = Variable(y)  # batch y
 
    output = cnn(b_x)[0]        # cnn output
    loss = loss_func(output, b_y)  # cross entropy loss
    optimizer.zero_grad()      # clear gradients for this training step
    loss.backward()         # backpropagation, compute gradients
    optimizer.step()        # apply gradients
 
    if step % 50 == 0:
      cnn.eval()
      eval_loss = 0.
      eval_acc = 0.
      for i, (tx, ty) in enumerate(test_loader):
        t_x = Variable(tx)
        t_y = Variable(ty)
        output = cnn(t_x)[0]
        loss = loss_func(output, t_y)
        eval_loss += loss.data[0]
        pred = torch.max(output, 1)[1]
        num_correct = (pred == t_y).sum()
        eval_acc += float(num_correct.data[0])
      acc_rate = eval_acc / float(len(test_data))
      print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(test_data)), acc_rate))

图片和label 见上一篇文章《pytorch 把MNIST数据集转换成图片和txt

结果如下:

上一篇:Python 实现list,tuple,str和dict之间的相互转换

栏    目:Python代码

下一篇:Python爬虫实现热门电影信息采集

本文标题:pytorch cnn 识别手写的字实现自建图片数据

本文地址:http://www.codeinn.net/misctech/207265.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有