欢迎来到代码驿站!

C代码

当前位置:首页 > 软件编程 > C代码

C语言中回调函数的含义与使用场景详解(2)

时间:2022-06-12 09:35:51|栏目:C代码|点击:

详解C语言中回调函数的含义与使用场景(2)

引言:在上一篇文章中介绍了回调函数的概念与使用方法,本节将深入地介绍回调函数典型的使用场景。通过使用回调函数可以实现驱动和应用程序的分离解耦,让程序更加地灵活。也可以借助回调函数实现插入自定义代码、分层设计程序的思想。

使用场景一(重定义):

在统一的接口中,动态地改变一个函数的功能。该函数的功能可以是加载参数、或者执行运算。示例如下:

typedef int (*my_calculate_t)(int a, int b);
static int cal_sum(int a, int b)
{
    printf("now is sum\r\n");
    return a + b;
}
static int cal_sub(int a, int b)
{
    printf("now is sub\r\n");
    return a - b;
}
static int cal_mul(int a, int b)
{
    printf("now is mul\r\n");
    return a * b;
}
static my_calculate_t s_cal = cal_sum;
static int test2_cal (int a, int b)
{
    int result = 0;
    if(s_cal) {
        result = s_cal(a ,b);
        printf("result=%d\r\n", result);
    }
    return result;
}
void app_main(void)
{
    printf("init done\r\n");
    int m = 10, n = 1, ret;
    ret = test2_cal(m, n);
}

上述代码通过 test2_cal() 实现计算接口的统一。只需改变函数指针 s_cal 的值,就可以让 test2_cal()执行不同的功能。我们可以拷贝上述程序分别对 s_cal赋值 cal_sumcal_subcal_mul实现在不改动其他代码的情况下,让 test2_cal 执行不同的运算。这种通过改变函数指针 s_cal 的值,让函数 test2_cal() 执行不同功能的特性,可以称之为重定义test2_cal()的功能。

上述程序运行结果:

init done
now is sum
result=11

使用场景二(扩展函数功能):

可以在程序中定义多个回调函数,若定义了就执行,否则就略过。实现在函数中扩展更多代码的目的(就像一个钩子函数一样)。示例如下:

typedef int (*my_calculate_t)(int a, int b);
static int cal_sum(int a, int b)
{
    printf("now is sum\r\n");
    return a + b;
}
static int cal_sub(int a, int b)
{
    printf("now is sub\r\n");
    return a - b;
}
static int cal_mul(int a, int b)
{
    printf("now is mul\r\n");
    return a * b;
}
static my_calculate_t s_c_array[5] = {cal_sum, cal_sub};
static int test1_cal(int a, int b)
{
    volatile int result = 0;
    volatile size_t i = 0;
    for(i=0; i<(sizeof(s_c_array)/sizeof(my_calculate_t)); i++) {
        if (s_c_array[i] != NULL){
            result = s_c_array[i](a, b);
            printf("i=%d, result=%d\r\n",i, result);
        }
    }
    return result;
}
static void my_cal_calculate_register(my_calculate_t cal)
{
    for(size_t i=0; i<(sizeof(s_c_array)/sizeof(my_calculate_t)); i++) {
        if (s_c_array[i] == NULL){
            s_c_array[i] = cal;
            return;
        }
    }
}
static void my_cal_calculate_unregister(my_calculate_t cal)
{
    for(size_t i=0; i<(sizeof(s_c_array)/sizeof(my_calculate_t)); i++) {
        if (s_c_array[i] == cal){
            s_c_array[i] = NULL;
            return;
        }
    }
}
void app_main(void)
{
    printf("init done\r\n");
    int m = 10, n = 2, ret;
    printf("test 1***************begin\r\n");
    test1_cal(m, n);
    printf("test 1***************end\r\n");
    printf("test 2***************begin\r\n");
    my_cal_calculate_register(cal_mul);
    test1_cal(m, n);
    printf("test 2***************end\r\n");
    printf("test 3***************begin\r\n");
    my_cal_calculate_unregister(cal_mul);
    test1_cal(m, n);
    printf("test 3***************begin\r\n");
}

上述代码通过在函数 test1_cal()增加一个指针数组 s_c_array[] 来控制函数 test1_cal()中实际执行调用哪些函数。默认的情况下,它仅调用 cal_sum 和 cal_sub两个函数,通过函数 my_cal_calculate_register()可以增加它调用的函数,示例中 my_cal_calculate_register(cal_mul);语句增加了其内部调用一个 cal_mul函数。

运行结果:

init done
test 1***************begin
now is sum
i=0, result=12
now is sub
i=1, result=8
test 1***************end
test 2***************begin
now is sum
i=0, result=12
now is sub
i=1, result=8
now is mul
i=2, result=20
test 2***************end
test 3***************begin
now is sum
i=0, result=12
now is sub
i=1, result=8
test 3***************begin
 

使用场景三(分层):

通过在结构体中使用 函数指针来实现程序的分层设计。分层带来的好处是方便维护与结构清晰。

typedef int (*my_calculate_t)(int a, int b);
typedef int (*add_self_t)(int a);
typedef void (*send_to_printf_t)(int a);
typedef struct my_test_struct_t
{
    my_calculate_t m_calculate;
    add_self_t m_add;
    send_to_printf_t m_printf;
}my_test_struct_t;
static int cal_sub(int a, int b)
{
    printf("now is sum\r\n");
    return a - b;
}
static int cal_add_self(int a)
{
    return a+1;
}
static void cal_send_to_printf(int a)
{
    printf("total is %d\r\n", a);
}
static void cal_send_to_printf2(int a)
{
    printf("now total is %d\r\n", a);
}
my_test_struct_t s_test = {
    .m_calculate = cal_sub,
    .m_add = cal_add_self,
    .m_printf = cal_send_to_printf,
};
static int test1_cal(int a, int b)
{
    int result = 0;
    if(s_test.m_calculate){
        result = s_test.m_calculate(a,b);
        printf("result1 is %d\r\n", result);
    }
    if(s_test.m_add){
        result = s_test.m_add(result);
        printf("result1 is %d\r\n", result);
    }
    if(s_test.m_printf) {
        s_test.m_printf(result);
    }
    return result;
}
void app_main(void)
{
    printf("init done\r\n");
    int m = 10, n = 2;
    printf("test 1***************begin\r\n");
    test1_cal(m, n);
    printf("test 1***************end\r\n");
    printf("test 2***************begin\r\n");
    s_test.m_printf = cal_send_to_printf2;
    test1_cal(m, n);
    printf("test 2***************end\r\n");
}

上述程序中通过在结构体 s_test中使用三个函数指针 m_calculatem_addm_printf来实现三个步骤:计算、自增、打印,三层功能的分层。每个层都是一个函数指针,所以每一层都可以通过改变函数指针的值,实现重新定义。

运行结果:

init done
test 1***************begin
now is sum
result1 is 8
result1 is 9
total is 9
test 1***************end
test 2***************begin
now is sum
result1 is 8
result1 is 9
now total is 9
test 2***************end
 

总结

本篇内容作为上一篇文章的深化,重点讲述了回调函数的三种典型使用场景:

  • 实现函数功能重定义
  • 扩展函数功能
  • 实现程序分层设计

上一篇:CMake语法及CMakeList.txt简单使用小结

栏    目:C代码

下一篇:C++ 强制类型转换详解

本文标题:C语言中回调函数的含义与使用场景详解(2)

本文地址:http://www.codeinn.net/misctech/204581.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有