欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Python方差特征过滤的实例分析

时间:2022-06-04 12:21:13|栏目:Python代码|点击:

说明

1、通过特征本身的方差来筛选特征。特征的方差越小,特征的变化越不明显。

2、变化越不明显的特征对我们区分标签没有太大作用,因此应该消除这些特征。

实例

def variance_demo():
    """
    过滤低方差特征
    :return:
    """
    # 1. 获取数据
    data = pd.read_csv('factor_returns.csv')
    data = data.iloc[:, 1:-2]
    print('data:\n', data)
 
    # 2. 实例化一个转换器类
    transfer = VarianceThreshold(threshold=10)
 
    # 3. 调用fit_transform()
    data_new = transfer.fit_transform(data)
    print('data_new:\n', data_new, data_new.shape)
 
   
    return None

知识点扩充:

方差过滤法

VarianceThreshold 是特征选择的一个简单基本方法,其原理在于?C底方差的特征的预测效果往往不好。而VarianceThreshold会移除所有那些方差不满足一些阈值的特征。默认情况下,它将会移除所有的零方差特征,即那些在所有的样本上的取值均不变的特征。

sklearn中的VarianceThreshold类中重要参数 threshold(方差的阈值),表示删除所有方差小于threshold的特征 #不填默认为0――删除所有记录相同的特征。

import pandas as pd
import numpy as np
np.random.seed(1) #设置随机种子,实现每次生成的随机数矩阵都一样
a= np.random.randint(0, 200,10)
b= np.random.randint(0, 200,10)
c= np.random.randint(0, 200,10)
d= [9,9,9,9,9,9,9,9,9,9]
data=pd.DataFrame({"A" : a,"B" : b,"C" : c,"D" : d})
data
from sklearn.feature_selection import VarianceThreshold
sel_model = VarianceThreshold(threshold = 0)
#删除不合格特征之后的新矩阵
sel_model.fit_transform(data)

上一篇:matplotlib绘制直方图的基本配置(万能模板案例)

栏    目:Python代码

下一篇:ubuntu 安装pyqt5和卸载pyQt5的方法

本文标题:Python方差特征过滤的实例分析

本文地址:http://www.codeinn.net/misctech/203738.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有