欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

python pyecharts库的用法大全

时间:2022-05-13 13:51:10|栏目:Python代码|点击:

什么是pyecharts?

  pyecharts 是一个用于生成 Echarts 图表的类库。

  echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化。pyecharts 是一个用于生成 Echarts 图表的类库。实际上就是 Echarts 与 Python 的对接。

  使用 pyecharts 可以生成独立的网页,也可以在 flask , Django 中集成使用。

pyecharts包含的图表#
  Bar(柱状图/条形图)
  Bar3D(3D 柱状图)
  Boxplot(箱形图)
  EffectScatter(带有涟漪特效动画的散点图)
  Funnel(漏斗图)
  Gauge(仪表盘)
  Geo(地理坐标系)
  Graph(关系图)
  HeatMap(热力图)
  Kline(K线图)
  Line(折线/面积图)
  Line3D(3D 折线图)
  Liquid(水球图)
  Map(地图)
  Parallel(平行坐标系)
  Pie(饼图)
  Polar(极坐标系)
  Radar(雷达图)
  Sankey(桑基图)
  Scatter(散点图)
  Scatter3D(3D 散点图)
  ThemeRiver(主题河流图)
  WordCloud(词云图)

  用户自定义

  Grid 类:并行显示多张图
  Overlap 类:结合不同类型图表叠加画在同张图上
  Page 类:同一网页按顺序展示多图
  Timeline 类:提供时间线轮播多张图

pyecharts安装

 pip install pyecharts

下面给大家介绍python pyecharts库的使用,一起看看!

现在下载的库都是1.x版本的,使用方法和以前有很大区别

加载

from pyecharts.charts import Line, Bar, Funnel
from pyecharts.faker import Faker
import pyecharts.options as opts
from pyecharts.commons.utils import JsCode

折线图的绘制

最简单的版本

line1 = (
 Line()
 .add_xaxis(['2015', '2016', '2017', '2018', '2019'])
 .add_yaxis('进入党政机关及事业单位的比例%', [30.23, 15.06, 17.6, 16.56, 18.51])
)

line1.render_notebook()

在这里插入图片描述

高级版本

多条线,图片大小,设置标题、图例及其位置,缺失数据的绘制,给图例也加上颜色进行区分

# https://blog.csdn.net/seakingx/article/details/105531515 绘制百分数
# https://www.freesion.com/article/2819552517/ 图例添加颜色,color参数,非linestyle_opts的子参数
line1 = (
 Line(init_opts=opts.InitOpts(width="600px", height="400px"))
 .add_xaxis(['2015', '2016', '2017', '2018', '2019'])
 .add_yaxis('进入党政机关及事业单位的比例%', [30.23, 15.06, 17.6, 16.56, 18.51], 
    label_opts=opts.LabelOpts(formatter=JsCode("function (params) {return params.value[1] + '%'}"))
    )
 .add_yaxis('签约国企、私企和三资企业比例%', [69.78, 84.78, None, 82.67, 81.33], 
    label_opts=opts.LabelOpts(formatter=JsCode("function (params) {return params.value[1] + '%'}")),
    #linestyle_opts=opts.LineStyleOpts(color='yellow', width=2)
    #linestyle_opts=opts.LineStyleOpts(width=2),
    color='blue'
    )
 .set_global_opts(title_opts=opts.TitleOpts(title='南开大学本科生的就业去向及比例',
            pos_right='50%'
            ),
      legend_opts=opts.LegendOpts(pos_right='10%',
            pos_top='10%',
            orient='vertical')
     )
 #.render('南开本科.html')
)

line1.render_notebook()

在这里插入图片描述

render()与render_notebook的报错和无反应:

line1有render代码时,就不能在代码里添加render_notebook了,否则报错: AttributeError: ‘str' object has no attribute ‘render_notebook'

条形图和折线图的结合

最简单的形式

x = Faker.choose()
scatter1 = (
 Bar()
 .add_xaxis(x)
 .add_yaxis("商家A", Faker.values(), yaxis_index=0) 
 # 设置副坐标轴时,必须加这个命令,这个命令并不能决定主副坐标轴
 .extend_axis(yaxis=opts.AxisOpts(type_="value", name="商家A", position="left")) 
 .set_global_opts(yaxis_opts=opts.AxisOpts(type_="value", name="商家B", position="right")) 
)

# 下面的图里只能设置个index
scatter2 = (
 Line()
 .add_xaxis(x)
 .add_yaxis("商家B", [v/1000 for v in Faker.values()], yaxis_index=1)
)
scatter1.overlap(scatter2)
scatter1.render_notebook()

在这里插入图片描述

副坐标轴的使用和坐标轴范围、刻度大小的设置,添加坐标轴的标签

# 绘制条形图
bar=(
 Bar()
 .add_xaxis(['2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021'])
 .add_yaxis('招录职位数', [11729, 13475, 15659, 15583, 16144, 9657, 13549, 13172])
 .add_yaxis('招录人数', [19538, 22249, 27817, 27061, 28533, 14537, 24128, 25726])
 
 # 设置副坐标轴
 .extend_axis(yaxis=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value} 万"), 
          interval=30,
         max_=180,
         min_=0) # 设置坐标轴的区间长度
    )
 #.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
 .set_global_opts(
  title_opts=opts.TitleOpts(title="历年公务员考试数据", pos_right='45%'), # 设置标题及标题的位置
  legend_opts=opts.LegendOpts(pos_right='10%', # 设置图例的位置
         #pos_top='10%',
         orient='vertical'), # 不同图例之间是竖着排放的
  #max_=40000, 这里没有这个lim参数,在坐标轴里面可以设置
  
  # 设置主坐标轴配置项
  yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value} 人"), 
         max_=50000)   # 设置坐标轴的范围 lim
 )

)

# 绘制折线图(也可以不加括号)
line = Line().add_xaxis(['2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021']).add_yaxis("报名人数", [152, 140.9, 139.46, 148.63, 138, 137.93, 140, '-'], 
      yaxis_index=1, #如果不加该参数,就没有副坐标轴,这样不同量级的数据就会出现问题
      label_opts=opts.LabelOpts(formatter=JsCode("function (params) {return params.value[1] + '万'}"))
      )
 
# 两个图形叠加起来
bar.overlap(line)
bar.render("overlap_bar_line.html")
bar.render_notebook()

在这里插入图片描述

绘制漏斗图

最简单的绘制方法

# 主要是数据格式和其他的不一致
funnel = (
 Funnel()
 .add("商城漏斗", [ list(two_values) for two_values in zip(['召回', '粗排', '精排'], [100, 80, 10]) ])
 .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}次")) 
 .set_global_opts(title_opts=opts.TitleOpts(title="请求过滤的漏斗分析"))
)
 
funnel.render_notebook()

复杂点的绘制方法

# https://zhuanlan.zhihu.com/p/63976935 一些参考
funnel = (
 Funnel(init_opts=opts.InitOpts(width="600px", height="400px")) #是宽和高,而不是像素
 #Funnel()
 .add("商城漏斗", [ list(two_values) sfor two_values in zip(['召回', '粗排', '精排'], [100, 80, 10]) ])
 #.set_series_opts(label_opts=opts.LabelOpts(is_show=False),
      #markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),]))
 .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}, {d}%")) # d是每个数值占总体的比重
 
 # 百分比这里建议传入一组新的y数据(用每个数据除以一个数值) https://zhuanlan.zhihu.com/p/63976935
 .set_global_opts(title_opts=opts.TitleOpts(title="请求过滤的漏斗分析"),
     #yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter='{data} {value}%')) #"{value} 人"
     )
)
 
funnel.render_notebook()

在这里插入图片描述

上一篇:Python深度强化学习之DQN算法原理详解

栏    目:Python代码

下一篇:教你使用python搭建一个QQ机器人实现叫起床服务

本文标题:python pyecharts库的用法大全

本文地址:http://www.codeinn.net/misctech/201791.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有