欢迎来到代码驿站!

C代码

当前位置:首页 > 软件编程 > C代码

OpenCV和C++实现图像的翻转(镜像)、平移、旋转、仿射与透视变换

时间:2022-05-03 10:56:59|栏目:C代码|点击:

官网教程

一、翻转(镜像)

头文件 quick_opencv.h:声明类与公共函数

#pragma once
#include <opencv2\opencv.hpp>
using namespace cv;

class QuickDemo {
public:
	...
	void flip_Demo(Mat& image);
	void rotate_Demo(Mat& image);
	void move_Demo(Mat& image);
	void Affine_Demo(Mat& image);
	void toushi_Demo(Mat& image);
	void perspective_detect(Mat& image);

};

主函数调用该类的公共成员函数

#include <opencv2\opencv.hpp>
#include <quick_opencv.h>
#include <iostream>
using namespace cv;


int main(int argc, char** argv) {
	Mat src = imread("D:\\Desktop\\pandas.jpg");
	if (src.empty()) {
		printf("Could not load images...\n");
		return -1;
	}
	namedWindow("input", WINDOW_NORMAL);
	imshow("input", src);

	QuickDemo qk;

	...
	qk.Affine_Demo(src);
	qk.move_Demo(src);
	qk.flip_Demo(src);
	qk.toushi_Demo(src);
	qk.perspective_detect(src);

	waitKey(0);
	destroyAllWindows();
	return 0;
}

源文件 quick_demo.cpp:实现类与公共函数

void QuickDemo::flip_Demo(Mat& image) {
	Mat dst0, dst1, dst2;
	flip(image, dst0, 0);
	flip(image, dst1, 1);
	flip(image, dst2, -1);
	imshow("dst0_上下翻转", dst0);
	imshow("dst1_左右翻转", dst1);
	imshow("dst2_对角线翻转", dst2);  //旋转180度
}

二、仿射扭曲

二维图像一般情况下的变换矩阵(旋转+平移),当我们只需要平移的时候,取 θ 的值为0,a和b的值就代表了图像沿x轴和y轴移动的距离;其中原图 (原图大小,不执行缩放)

获取变换矩阵

变换矩阵计算:

其中:

Mat getRotationMatrix2D( Point2f center,      源图像中旋转的中心
double angle,      角度以度为单位的旋转角度。正值表示逆时针旋转(坐标原点假定为左上角)。
double scale     各向同性比例因子。
)

仿射扭曲函数 warpAffine

函数签名

void warpAffine( InputArray src,              输入矩阵
OutputArray dst,            输出矩阵
InputArray M,              2×3 变换矩阵
Size dsize,              输出图像大小
int flags = INTER_LINEAR,       插值方式:默认线性插值
int borderMode = BORDER_CONSTANT, 边缘处理方式
const Scalar& borderValue = Scalar()   边缘填充值,默认=0
);

保留所有原图像素的旋转,原理:

旋转

void QuickDemo::rotate_Demo(Mat& image) {
	Mat dst_0, dst_1, M;
	int h = image.rows;
	int w = image.cols;
	M = getRotationMatrix2D(Point(w / 2, h / 2), 45, 1.0);
	warpAffine(image, dst_0, M, image.size());

	double cos = abs(M.at<double>(0, 0));
	double sin = abs(M.at<double>(0, 1));

	int new_w = cos * w + sin * h;
	int new_h = cos * h + sin * w;
	M.at<double>(0, 2) += (new_w / 2.0 - w / 2);
	M.at<double>(1, 2) += (new_h / 2.0 - h / 2);
	warpAffine(image, dst_1, M, Size(new_w, new_h), INTER_LINEAR, 0, Scalar(255, 255, 0));
	imshow("旋转演示0", dst_0);
	imshow("旋转演示1", dst_1);
}

依次为:原图,旋转45度,保留所有原图像素的旋转45度

平移

void QuickDemo::move_Demo(Mat& image) {
	Mat dst_move;
	Mat move_mat = (Mat_<double>(2, 3) << 1, 0, 10, 0, 1, 30);//沿x轴移动10沿y轴移动30
	warpAffine(image, dst_move, move_mat, image.size());
	imshow("dst_move", dst_move);

	double angle_ = 3.14159265354 / 16.0;
	cout << "pi=" << cos(angle_) << endl;
	Mat rota_mat = (Mat_<double>(2, 3) << cos(angle_), -sin(angle_), 1, sin(angle_), cos(angle_), 1);
	warpAffine(image, rotate_dst, rota_mat, image.size());
	imshow("rotate_dst", rotate_dst);
}

三、仿射变换

 Mat getAffineTransform(    返回变换矩阵
const Point2f src[],      变换前三个点的数组
const Point2f dst[]     变换后三个点的数组
);
void

void QuickDemo::Affine_Demo(Mat& image) {
	Mat warp_dst;
	Mat warp_mat(2, 3, CV_32FC1);

	Point2f srcTri[3];
	Point2f dstTri[3];

	/// 设置源图像和目标图像上的三组点以计算仿射变换
	srcTri[0] = Point2f(0, 0);
	srcTri[1] = Point2f(image.cols - 1, 0);
	srcTri[2] = Point2f(0, image.rows - 1);
	for (size_t i = 0; i < 3; i++){
		circle(image, srcTri[i], 2, Scalar(0, 0, 255), 5, 8);
	}
	
	dstTri[0] = Point2f(image.cols * 0.0, image.rows * 0.13);
	dstTri[1] = Point2f(image.cols * 0.95, image.rows * 0.15);
	dstTri[2] = Point2f(image.cols * 0.15, image.rows * 0.9);

	warp_mat = getAffineTransform(srcTri, dstTri);
	warpAffine(image, warp_dst, warp_mat, warp_dst.size());
	imshow("warp_dst", warp_dst);
}

四、透视变换

获取透射变换的矩阵:

Mat getPerspectiveTransform(   返回变换矩阵
const Point2f src[],     透视变换前四个点的 数组
const Point2f dst[],     透视变换后四个点的 数组
int solveMethod = DECOMP_LU
)

透射变换

void warpPerspective( InputArray src,         原图像
OutputArray dst,         返回图像
InputArray M,           透视变换矩阵
Size dsize,          返回图像的大小(宽,高)
int flags = INTER_LINEAR,   插值方法
int borderMode = BORDER_CONSTANT,  边界处理
const Scalar& borderValue = Scalar()    缩放处理
)

void QuickDemo::toushi_Demo(Mat& image) {
	Mat toushi_dst, toushi_mat;
	Point2f toushi_before[4];
	toushi_before[0] = Point2f(122, 220);
	toushi_before[1] = Point2f(397, 121);
	toushi_before[2] = Point2f(133, 339);
	toushi_before[3] = Point2f(397, 218);

	int width_0  = toushi_before[1].x - toushi_before[0].x;
	int height_0 = toushi_before[1].y - toushi_before[0].y;
	int width_1 = toushi_before[2].x - toushi_before[0].x;
	int height_1 = toushi_before[2].y - toushi_before[0].y;

	int width = (int)sqrt(width_0 * width_0 + height_0 * height_0);
	int height = (int)sqrt(width_1 * width_1 + height_1 * height_1);

	Point2f toushi_after[4];
	toushi_after[0] = Point2f(2, 2);                    // x0, y0
	toushi_after[1] = Point2f(width+2, 2);              // x1, y0
	toushi_after[2] = Point2f(2, height+2);             // x0, y1
	toushi_after[3] = Point2f(width + 2, height + 2);   // x1, y1

	for (size_t i = 0; i < 4; i++){
		cout << toushi_after[i] << endl;
	}

	toushi_mat = getPerspectiveTransform(toushi_before, toushi_after);
	warpPerspective(image, toushi_dst, toushi_mat, Size(width, height));
	imshow("toushi_dst", toushi_dst);
}

综合示例

自动化透视矫正图像:

流程:

  1. 灰度化二值化
  2. 形态学去除噪点
  3. 获取轮廓
  4. 检测直线
  5. 计算直线交点
  6. 获取四个透视顶点
  7. 透视变换

inline void Intersection(Point2i& interPoint, Vec4i& line1, Vec4i& line2) {
	// x1, y1, x2, y2 = line1[0], line1[1], line1[2], line1[3]

	int A1 = line1[3] - line1[1];
	int B1 = line1[0] - line1[2];
	int C1 = line1[1] * line1[2] - line1[0] * line1[3];

	int A2 = line2[3] - line2[1];
	int B2 = line2[0] - line2[2];
	int C2 = line2[1] * line2[2] - line2[0] * line2[3];

	interPoint.x = static_cast<int>((B1 * C2 - B2 * C1) / (A1 * B2 - A2 * B1));
	interPoint.y = static_cast<int>((C1 * A2 - A1 * C2) / (A1 * B2 - A2 * B1));
}



void QuickDemo::perspective_detect(Mat& image) {
	Mat gray_dst, binary_dst, morph_dst;
	// 二值化
	cvtColor(image, gray_dst, COLOR_BGR2GRAY);
	threshold(gray_dst, binary_dst, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);

	//形态学操作
	Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5));
	morphologyEx(binary_dst, morph_dst, MORPH_CLOSE, kernel, Point(-1, -1), 3);
	bitwise_not(morph_dst, morph_dst);
	imshow("morph_dst2", morph_dst);

	//轮廓查找与可视化
	vector<vector<Point>> contours;
	vector<Vec4i> hierarches;
	int height = image.rows;
	int width = image.cols;
	Mat contours_Img = Mat::zeros(image.size(), CV_8UC3);
	findContours(morph_dst, contours, hierarches, RETR_TREE, CHAIN_APPROX_SIMPLE);
	for (size_t i = 0; i < contours.size(); i++){
		Rect rect = boundingRect(contours[i]);
		if (rect.width > width / 2 && rect.width < width - 5) {
			drawContours(contours_Img, contours, i, Scalar(0, 0, 255), 2, 8, hierarches, 0, Point());
		}
	}
	imshow("contours_Img", contours_Img);

	vector<Vec4i> lines;
	Mat houghImg;
	int accu = min(width * 0.5, height * 0.5);
	cvtColor(contours_Img, houghImg, COLOR_BGR2GRAY);
	HoughLinesP(houghImg, lines, 1, CV_PI / 180, accu, accu*0.6, 0);

	Mat lineImg = Mat::zeros(image.size(), CV_8UC3);
	for (size_t i = 0; i < lines.size(); i++){
		Vec4i ln = lines[i];
		line(lineImg, Point(ln[0], ln[1]), Point(ln[2], ln[3]), Scalar(0, 0, 255), 2, 8, 0);
	}

	// 寻找与定位上下左右四条直线
	int delta = 0;
	Vec4i topline = { 0, 0, 0, 0 };
	Vec4i bottomline;
	Vec4i leftline, rightline;
	for (size_t i = 0; i < lines.size(); i++) {
		Vec4i ln = lines[i];
		delta = abs(ln[3] - ln[1]); // y2-y1

		//topline
		if (ln[3] < height / 2.0 && ln[1] < height / 2.0 && delta < accu - 1) {
			if (topline[3] > ln[3] && topline[3] > 0) {
				topline = lines[i];
			}
			else {
				topline = lines[i];
			}
		}
		if (ln[3] > height / 2.0 && ln[1] > height / 2.0 && delta < accu - 1) {
			bottomline = lines[i];
		}
		if (ln[0] < width / 2.0 && ln[2] < width / 2.0) {
			leftline = lines[i];
		}
		if (ln[0] > width / 2.0 && ln[2] > width / 2.0) {
			rightline = lines[i];
		}
	}

	cout << "topline: " << topline << endl;
	cout << "bottomline: " << bottomline << endl;
	cout << "leftline: " << leftline << endl;
	cout << "rightline: " << rightline << endl;

	// 计算上述四条直线交点(两条线的交点:依次为左上,右上,左下,右下)
	Point2i p0, p1, p2, p3;
	Intersection(p0, topline, leftline);
	Intersection(p1, topline, rightline);
	Intersection(p2, bottomline, leftline);
	Intersection(p3, bottomline, rightline);

	circle(lineImg, p0, 2, Scalar(255, 0, 0), 2, 8, 0);
	circle(lineImg, p1, 2, Scalar(255, 0, 0), 2, 8, 0);
	circle(lineImg, p2, 2, Scalar(255, 0, 0), 2, 8, 0);
	circle(lineImg, p3, 2, Scalar(255, 0, 0), 2, 8, 0);
	imshow("Intersection", lineImg);

	//透视变换
	vector<Point2f> src_point(4);
	src_point[0] = p0;
	src_point[1] = p1;
	src_point[2] = p2;
	src_point[3] = p3;

	int new_height = max(abs(p2.y - p0.y), abs(p3.y - p1.y));
	int new_width = max(abs(p1.x - p0.x), abs(p3.x - p2.x));
	cout << "new_height = " << new_height << endl;
	cout << "new_width = " << new_width << endl;
	
	vector<Point2f> dst_point(4);
	dst_point[0] = Point(0,0);
	dst_point[1] = Point(new_width, 0);
	dst_point[2] = Point(0, new_height);
	dst_point[3] = Point(new_width, new_height);
	
	Mat resultImg;
	Mat wrap_mat = getPerspectiveTransform(src_point, dst_point);
	warpPerspective(image, resultImg, wrap_mat, Size(new_width, new_height));
	imshow("resultImg", resultImg);
}

关键步骤可视化



总结

上一篇:c++ bitset详解

栏    目:C代码

下一篇:C++类常量和类枚举

本文标题:OpenCV和C++实现图像的翻转(镜像)、平移、旋转、仿射与透视变换

本文地址:http://www.codeinn.net/misctech/200864.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有