欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

python中np.multiply()、np.dot()和星号(*)三种乘法运算的区别详解

时间:2022-03-20 09:49:44|栏目:Python代码|点击:

为了区分三种乘法运算的规则,具体分析如下:

import numpy as np

1. np.multiply()函数

函数作用

数组和矩阵对应位置相乘,输出与相乘数组/矩阵的大小一致

1.1数组场景

A = np.arange(1,5).reshape(2,2)
A

array([[1, 2],
       [3, 4]])

B = np.arange(0,4).reshape(2,2)
B

array([[0, 1],
       [2, 3]])

np.multiply(A,B)  #数组对应元素位置相乘

array([[ 0,  2],
       [ 6, 12]])

1.2 矩阵场景

np.multiply(np.mat(A),np.mat(B))  #矩阵对应元素位置相乘,利用np.mat()将数组转换为矩阵

matrix([[ 0,  2],
        [ 6, 12]])

np.sum(np.multiply(np.mat(A),np.mat(B))) #输出为标量

20

2. np.dot()函数

函数作用

对于秩为1的数组,执行对应位置相乘,然后再相加;

对于秩不为1的二维数组,执行矩阵乘法运算;超过二维的可以参考numpy库介绍。

2.1 数组场景

2.1.1 数组秩不为1的场景

A = np.arange(1,5).reshape(2,2)
A

array([[1, 2],
       [3, 4]])

B = np.arange(0,4).reshape(2,2)
B

array([[0, 1],
       [2, 3]])

np.dot(A,B) #对数组执行矩阵相乘运算

array([[ 4,  7],
       [ 8, 15]])

2.1.2 数组秩为1的场景

C = np.arange(1,4)
C

array([1, 2, 3])

D = np.arange(0,3)
D

array([0, 1, 2])

np.dot(C,D) #对应位置相乘,再求和

8

2.2 矩阵场景

np.dot(np.mat(A),np.mat(B)) #执行矩阵乘法运算

matrix([[ 4,  7],
        [ 8, 15]])

3. 星号(*)乘法运算

作用

对数组执行对应位置相乘

对矩阵执行矩阵乘法运算

3.1 数组场景

A = np.arange(1,5).reshape(2,2)
A

array([[1, 2],
       [3, 4]])

B = np.arange(0,4).reshape(2,2)
B

array([[0, 1],
       [2, 3]])

A*B #对应位置点乘

array([[ 0,  2],
       [ 6, 12]])

3.2矩阵场景

(np.mat(A))*(np.mat(B)) #执行矩阵运算

matrix([[ 4,  7],
        [ 8, 15]])

上一篇:matplotlib实现自定义散点形状marker的3种方法

栏    目:Python代码

下一篇:使用Turtle画正螺旋线的方法

本文标题:python中np.multiply()、np.dot()和星号(*)三种乘法运算的区别详解

本文地址:http://www.codeinn.net/misctech/196752.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有