欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

python 决策树算法的实现

时间:2022-03-05 09:50:52|栏目:Python代码|点击:
'''
数据集:Mnist
训练集数量:60000
测试集数量:10000
------------------------------
运行结果:ID3(未剪枝)
  正确率:85.9%
  运行时长:356s
'''

import time
import numpy as np


def loadData(fileName):
  '''
  加载文件
  :param fileName:要加载的文件路径
  :return: 数据集和标签集
  '''
  # 存放数据及标记
  dataArr = [];
  labelArr = []
  # 读取文件
  fr = open(fileName)
  # 遍历文件中的每一行
  for line in fr.readlines():
    # 获取当前行,并按“,”切割成字段放入列表中
    # strip:去掉每行字符串首尾指定的字符(默认空格或换行符)
    # split:按照指定的字符将字符串切割成每个字段,返回列表形式
    curLine = line.strip().split(',')
    # 将每行中除标记外的数据放入数据集中(curLine[0]为标记信息)
    # 在放入的同时将原先字符串形式的数据转换为整型
    # 此外将数据进行了二值化处理,大于128的转换成1,小于的转换成0,方便后续计算
    dataArr.append([int(int(num) > 128) for num in curLine[1:]])
    # 将标记信息放入标记集中
    # 放入的同时将标记转换为整型
    labelArr.append(int(curLine[0]))
  # 返回数据集和标记
  return dataArr, labelArr


def majorClass(labelArr):
  '''
  找到当前标签集中占数目最大的标签
  :param labelArr: 标签集
  :return: 最大的标签
  '''
  # 建立字典,用于不同类别的标签技术
  classDict = {}
  # 遍历所有标签
  for i in range(len(labelArr)):
    # 当第一次遇到A标签时,字典内还没有A标签,这时候直接幅值加1是错误的,
    # 所以需要判断字典中是否有该键,没有则创建,有就直接自增
    if labelArr[i] in classDict.keys():
      # 若在字典中存在该标签,则直接加1
      classDict[labelArr[i]] += 1
    else:
      # 若无该标签,设初值为1,表示出现了1次了
      classDict[labelArr[i]] = 1
  # 对字典依据值进行降序排序
  classSort = sorted(classDict.items(), key=lambda x: x[1], reverse=True)
  # 返回最大一项的标签,即占数目最多的标签
  return classSort[0][0]


def calc_H_D(trainLabelArr):
  '''
  计算数据集D的经验熵,参考公式5.7 经验熵的计算
  :param trainLabelArr:当前数据集的标签集
  :return: 经验熵
  '''
  # 初始化为0
  H_D = 0
  # 将当前所有标签放入集合中,这样只要有的标签都会在集合中出现,且出现一次。
  # 遍历该集合就可以遍历所有出现过的标记并计算其Ck
  # 这么做有一个很重要的原因:首先假设一个背景,当前标签集中有一些标记已经没有了,比如说标签集中
  # 没有0(这是很正常的,说明当前分支不存在这个标签)。 式5.7中有一项Ck,那按照式中的针对不同标签k
  # 计算Cl和D并求和时,由于没有0,那么C0=0,此时C0/D0=0,log2(C0/D0) = log2(0),事实上0并不在log的
  # 定义区间内,出现了问题
  # 所以使用集合的方式先知道当前标签中都出现了那些标签,随后对每个标签进行计算,如果没出现的标签那一项就
  # 不在经验熵中出现(未参与,对经验熵无影响),保证log的计算能一直有定义
  trainLabelSet = set([label for label in trainLabelArr])
  # 遍历每一个出现过的标签
  for i in trainLabelSet:
    # 计算|Ck|/|D|
    # trainLabelArr == i:当前标签集中为该标签的的位置
    # 例如a = [1, 0, 0, 1], c = (a == 1): c == [True, false, false, True]
    # trainLabelArr[trainLabelArr == i]:获得为指定标签的样本
    # trainLabelArr[trainLabelArr == i].size:获得为指定标签的样本的大小,即标签为i的样本
    # 数量,就是|Ck|
    # trainLabelArr.size:整个标签集的数量(也就是样本集的数量),即|D|
    p = trainLabelArr[trainLabelArr == i].size / trainLabelArr.size
    # 对经验熵的每一项累加求和
    H_D += -1 * p * np.log2(p)

  # 返回经验熵
  return H_D


def calcH_D_A(trainDataArr_DevFeature, trainLabelArr):
  '''
  计算经验条件熵
  :param trainDataArr_DevFeature:切割后只有feature那列数据的数组
  :param trainLabelArr: 标签集数组
  :return: 经验条件熵
  '''
  # 初始为0
  H_D_A = 0
  # 在featue那列放入集合中,是为了根据集合中的数目知道该feature目前可取值数目是多少
  trainDataSet = set([label for label in trainDataArr_DevFeature])

  # 对于每一个特征取值遍历计算条件经验熵的每一项
  for i in trainDataSet:
    # 计算H(D|A)
    # trainDataArr_DevFeature[trainDataArr_DevFeature == i].size / trainDataArr_DevFeature.size:|Di| / |D|
    # calc_H_D(trainLabelArr[trainDataArr_DevFeature == i]):H(Di)
    H_D_A += trainDataArr_DevFeature[trainDataArr_DevFeature == i].size / trainDataArr_DevFeature.size \
         * calc_H_D(trainLabelArr[trainDataArr_DevFeature == i])
  # 返回得出的条件经验熵
  return H_D_A


def calcBestFeature(trainDataList, trainLabelList):
  '''
  计算信息增益最大的特征
  :param trainDataList: 当前数据集
  :param trainLabelList: 当前标签集
  :return: 信息增益最大的特征及最大信息增益值
  '''
  # 将数据集和标签集转换为数组形式
  # trainLabelArr转换后需要转置,这样在取数时方便
  # 例如a = np.array([1, 2, 3]); b = np.array([1, 2, 3]).T
  # 若不转置,a[0] = [1, 2, 3],转置后b[0] = 1, b[1] = 2
  # 对于标签集来说,能够很方便地取到每一位是很重要的
  trainDataArr = np.array(trainDataList)
  trainLabelArr = np.array(trainLabelList).T

  # 获取当前特征数目,也就是数据集的横轴大小
  featureNum = trainDataArr.shape[1]

  # 初始化最大信息增益
  maxG_D_A = -1
  # 初始化最大信息增益的特征
  maxFeature = -1
  # 对每一个特征进行遍历计算
  for feature in range(featureNum):
    # “5.2.2 信息增益”中“算法5.1(信息增益的算法)”第一步:
    # 1.计算数据集D的经验熵H(D)
    H_D = calc_H_D(trainLabelArr)
    # 2.计算条件经验熵H(D|A)
    # 由于条件经验熵的计算过程中只涉及到标签以及当前特征,为了提高运算速度(全部样本
    # 做成的矩阵运算速度太慢,需要剔除不需要的部分),将数据集矩阵进行切割
    # 数据集在初始时刻是一个Arr = 60000*784的矩阵,针对当前要计算的feature,在训练集中切割下
    # Arr[:, feature]这么一条来,因为后续计算中数据集中只用到这个(没明白的跟着算一遍例5.2)
    # trainDataArr[:, feature]:在数据集中切割下这么一条
    # trainDataArr[:, feature].flat:将这么一条转换成竖着的列表
    # np.array(trainDataArr[:, feature].flat):再转换成一条竖着的矩阵,大小为60000*1(只是初始是
    # 这么大,运行过程中是依据当前数据集大小动态变的)
    trainDataArr_DevideByFeature = np.array(trainDataArr[:, feature].flat)
    # 3.计算信息增益G(D|A)  G(D|A) = H(D) - H(D | A)
    G_D_A = H_D - calcH_D_A(trainDataArr_DevideByFeature, trainLabelArr)
    # 不断更新最大的信息增益以及对应的feature
    if G_D_A > maxG_D_A:
      maxG_D_A = G_D_A
      maxFeature = feature
  return maxFeature, maxG_D_A


def getSubDataArr(trainDataArr, trainLabelArr, A, a):
  '''
  更新数据集和标签集
  :param trainDataArr:要更新的数据集
  :param trainLabelArr: 要更新的标签集
  :param A: 要去除的特征索引
  :param a: 当data[A]== a时,说明该行样本时要保留的
  :return: 新的数据集和标签集
  '''
  # 返回的数据集
  retDataArr = []
  # 返回的标签集
  retLabelArr = []
  # 对当前数据的每一个样本进行遍历
  for i in range(len(trainDataArr)):
    # 如果当前样本的特征为指定特征值a
    if trainDataArr[i][A] == a:
      # 那么将该样本的第A个特征切割掉,放入返回的数据集中
      retDataArr.append(trainDataArr[i][0:A] + trainDataArr[i][A + 1:])
      # 将该样本的标签放入返回标签集中
      retLabelArr.append(trainLabelArr[i])
  # 返回新的数据集和标签集
  return retDataArr, retLabelArr


def createTree(*dataSet):
  '''
  递归创建决策树
  :param dataSet:(trainDataList, trainLabelList) <<-- 元祖形式
  :return:新的子节点或该叶子节点的值
  '''
  # 设置Epsilon,“5.3.1 ID3算法”第4步提到需要将信息增益与阈值Epsilon比较,若小于则直接处理后返回T
  Epsilon = 0.1
  # 从参数中获取trainDataList和trainLabelList
  trainDataList = dataSet[0][0]
  trainLabelList = dataSet[0][1]
  # 打印信息:开始一个子节点创建,打印当前特征向量数目及当前剩余样本数目
  print('start a node', len(trainDataList[0]), len(trainLabelList))

  # 将标签放入一个字典中,当前样本有多少类,在字典中就会有多少项
  # 也相当于去重,多次出现的标签就留一次。举个例子,假如处理结束后字典的长度为1,那说明所有的样本
  # 都是同一个标签,那就可以直接返回该标签了,不需要再生成子节点了。
  classDict = {i for i in trainLabelList}
  # 如果D中所有实例属于同一类Ck,则置T为单节点数,并将Ck作为该节点的类,返回T
  # 即若所有样本的标签一致,也就不需要再分化,返回标记作为该节点的值,返回后这就是一个叶子节点
  if len(classDict) == 1:
    # 因为所有样本都是一致的,在标签集中随便拿一个标签返回都行,这里用的第0个(因为你并不知道
    # 当前标签集的长度是多少,但运行中所有标签只要有长度都会有第0位。
    return trainLabelList[0]

  # 如果A为空集,则置T为单节点数,并将D中实例数最大的类Ck作为该节点的类,返回T
  # 即如果已经没有特征可以用来再分化了,就返回占大多数的类别
  if len(trainDataList[0]) == 0:
    # 返回当前标签集中占数目最大的标签
    return majorClass(trainLabelList)

  # 否则,按式5.10计算A中个特征值的信息增益,选择信息增益最大的特征Ag
  Ag, EpsilonGet = calcBestFeature(trainDataList, trainLabelList)

  # 如果Ag的信息增益比小于阈值Epsilon,则置T为单节点树,并将D中实例数最大的类Ck
  # 作为该节点的类,返回T
  if EpsilonGet < Epsilon:
    return majorClass(trainLabelList)

  # 否则,对Ag的每一可能值ai,依Ag=ai将D分割为若干非空子集Di,将Di中实例数最大的
  # 类作为标记,构建子节点,由节点及其子节点构成树T,返回T
  treeDict = {Ag: {}}
  # 特征值为0时,进入0分支
  # getSubDataArr(trainDataList, trainLabelList, Ag, 0):在当前数据集中切割当前feature,返回新的数据集和标签集
  treeDict[Ag][0] = createTree(getSubDataArr(trainDataList, trainLabelList, Ag, 0))
  treeDict[Ag][1] = createTree(getSubDataArr(trainDataList, trainLabelList, Ag, 1))

  return treeDict


def predict(testDataList, tree):
  '''
  预测标签
  :param testDataList:样本
  :param tree: 决策树
  :return: 预测结果
  '''
  # treeDict = copy.deepcopy(tree)

  # 死循环,直到找到一个有效地分类
  while True:
    # 因为有时候当前字典只有一个节点
    # 例如{73: {0: {74:6}}}看起来节点很多,但是对于字典的最顶层来说,只有73一个key,其余都是value
    # 若还是采用for来读取的话不太合适,所以使用下行这种方式读取key和value
    (key, value), = tree.items()
    # 如果当前的value是字典,说明还需要遍历下去
    if type(tree[key]).__name__ == 'dict':
      # 获取目前所在节点的feature值,需要在样本中删除该feature
      # 因为在创建树的过程中,feature的索引值永远是对于当时剩余的feature来设置的
      # 所以需要不断地删除已经用掉的特征,保证索引相对位置的一致性
      dataVal = testDataList[key]
      del testDataList[key]
      # 将tree更新为其子节点的字典
      tree = value[dataVal]
      # 如果当前节点的子节点的值是int,就直接返回该int值
      # 例如{403: {0: 7, 1: {297:7}},dataVal=0
      # 此时上一行tree = value[dataVal],将tree定位到了7,而7不再是一个字典了,
      # 这里就可以直接返回7了,如果tree = value[1],那就是一个新的子节点,需要继续遍历下去
      if type(tree).__name__ == 'int':
        # 返回该节点值,也就是分类值
        return tree
    else:
      # 如果当前value不是字典,那就返回分类值
      return value


def accuracy(testDataList, testLabelList, tree):
  '''
  测试准确率
  :param testDataList:待测试数据集
  :param testLabelList: 待测试标签集
  :param tree: 训练集生成的树
  :return: 准确率
  '''
  # 错误次数计数
  errorCnt = 0
  # 遍历测试集中每一个测试样本
  for i in range(len(testDataList)):
    # 判断预测与标签中结果是否一致
    if testLabelList[i] != predict(testDataList[i], tree):
      errorCnt += 1
  # 返回准确率
  return 1 - errorCnt / len(testDataList)


if __name__ == '__main__':
  # 开始时间
  start = time.time()

  # 获取训练集
  trainDataList, trainLabelList = loadData('../Mnist/mnist_train.csv')
  # 获取测试集
  testDataList, testLabelList = loadData('../Mnist/mnist_test.csv')

  # 创建决策树
  print('start create tree')
  tree = createTree((trainDataList, trainLabelList))
  print('tree is:', tree)

  # 测试准确率
  print('start test')
  accur = accuracy(testDataList, testLabelList, tree)
  print('the accur is:', accur)

  # 结束时间
  end = time.time()
  print('time span:', end - start)

上一篇:python list使用示例 list中找连续的数字

栏    目:Python代码

下一篇:解决Python使用列表副本的问题

本文标题:python 决策树算法的实现

本文地址:http://www.codeinn.net/misctech/195279.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有