欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

pytorch torch.expand和torch.repeat的区别详解

时间:2020-10-30 14:17:54|栏目:Python代码|点击:

1.torch.expand

函数返回张量在某一个维度扩展之后的张量,就是将张量广播到新形状。函数对返回的张量不会分配新内存,即在原始张量上返回只读视图,返回的张量内存是不连续的。类似于numpy中的broadcast_to函数的作用。如果希望张量内存连续,可以调用contiguous函数。

例子:

import torch

x = torch.tensor([1, 2, 3, 4])
xnew = x.expand(2, 4)
print(xnew)

输出:

tensor([[1, 2, 3, 4],
        [1, 2, 3, 4]])

2.torch.repeat

torch.repeat用法类似np.tile,就是将原矩阵横向、纵向地复制。与torch.expand不同的是torch.repeat返回的张量在内存中是连续的。

例子1:

将张量横向的复制

import torch

x = torch.tensor([1, 2, 3])
xnew = x.repeat(1,3)
print(xnew)

输出:

tensor([[1, 2, 3, 1, 2, 3, 1, 2, 3]])

例子2:

将张量纵向的复制

import torch

x = torch.tensor([1, 2, 3])
xnew = x.repeat(3,1)
print(xnew)

输出:

tensor([[1, 2, 3],
        [1, 2, 3],
        [1, 2, 3]])

上一篇:使用python将大量数据导出到Excel中的小技巧分享

栏    目:Python代码

下一篇:python实现k均值算法示例(k均值聚类算法)

本文标题:pytorch torch.expand和torch.repeat的区别详解

本文地址:http://www.codeinn.net/misctech/17283.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有