欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

解决keras backend 越跑越慢问题

时间:2021-06-25 09:25:08|栏目:Python代码|点击:

Keras运行迭代一定代数以后,速度越来越慢,经检查是因为在循环迭代过程中增加了新的计算节点,导致计算节点越来越多,内存被占用完,速度变慢。

判断是否在循环迭代过程中增加了新的计算节点,可以用下面的语句:

tf.Graph.finalize()

如果增加了新的计算节点,就会报错,如果没有报错,说明没有增加计算节点。

补充知识:win10下pytorch,tensorflow,keras+tf速度对比

采用GitHub上的代码

运行类似vgg模型,在cifar10上训练,结果朋友torch与tensorflow速度相当,远远快过keras。

pytorch tensorflow keras+tensorflow
version 0.4.0 1.8.0 Keras: 2.1.6 Tensorflow: 1.8.0
train time: 1min 14s 1min 9s 1min 51s
evaluate time: 378 ms 9.4 s 826 ms

上一篇:Python3 搭建Qt5 环境的方法示例

栏    目:Python代码

下一篇:浅谈keras 的抽象后端(from keras import backend as K)

本文标题:解决keras backend 越跑越慢问题

本文地址:http://www.codeinn.net/misctech/147525.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有