欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

pytorch 实现张量tensor,图片,CPU,GPU,数组等的转换

时间:2021-06-11 08:12:21|栏目:Python代码|点击:

1, 创建pytorch 的Tensor张量:

torch.rand((3,224,224)) #创建随机值的三维张量,大小为(3,224,224)
 
torch.Tensor([3,2]) #创建张量,[3,2]

2, cpu上的tensor和GPU即pytorch创建的tensor的相互转化

b = a.cpu() # GPU → CPU
 
a = b.cuda() #CPU → GPU

3, tensor和numpy的转化

b = a.numpy() # tensor转化为 numpy数组
 
a = b.from_numpy() # numpy数组转化为tensor

4, torch的GPU tensor保存为图片

import scipy.misc
 
scipy.misc.imsave(‘pic_name',img) #img为二维张量,比如(224,224),保存为黑白图

5, 堆叠矩阵,形成彩色图片

img = np.stack((ia,b,c),dim) #堆叠矩阵a,b,c 可用于三通道图像的保存 dim表示要增加的维度,
#比如a,b,c均为(224,224)大小的矩阵,那么令dim=-1,则 img的维度为(224,224,3)

6, 从numpy数组保存图片

from PIL import Image
 
im = Image.fromarray(A)
 
im.save("your_file.jpeg")

7, 读取图片为矩阵:

import matplotlib.image
im = matplotlib.image.imread('0_0.jpg')

8, 保存矩阵为图片:

import numpy as np
import scipy.misc
 
x = np.random.random((600,800,3))
scipy.misc.imsave('meelo.jpg', x)

上一篇:使用FastCGI部署Python的Django应用的教程

栏    目:Python代码

下一篇:最小二乘法及其python实现详解

本文标题:pytorch 实现张量tensor,图片,CPU,GPU,数组等的转换

本文地址:http://www.codeinn.net/misctech/140057.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有