欢迎来到代码驿站!

C代码

当前位置:首页 > 软件编程 > C代码

C语言快速幂取模算法小结

时间:2021-06-01 08:52:39|栏目:C代码|点击:

本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法。分享给大家供大家参考之用。具体如下:

首先,所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余)。在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快、计算范围更大的算法,产生了快速幂取模算法。我们先从简单的例子入手:求abmodc

算法1.直接设计这个算法:

int ans = 1;
for(int i = 1;i<=b;i++)
{
  ans = ans * a;
}
ans = ans % c;

缺点:这个算法存在着明显的问题,如果a和b过大,很容易就会溢出。

我们先来看看第一个改进方案:在讲这个方案之前,要先看这样一个公式:ab mod c = (a mod c)c mod c

于是不用思考的进行了改进:

算法2.改进算法:

int ans = 1;
a = a % c; //加上这一句
for(int i = 1;i<=b;i++)
{
  ans = ans * a;
}
ans = ans % c;

读者应该可以想到,既然某个因子取余之后相乘再取余保持余数不变,那么新算得的ans也可以进行取余,所以得到比较良好的改进版本。

算法3.进一步改进算法:

int ans = 1;
a = a % c; //加上这一句
for(int i = 1;i<=b;i++)
{
  ans = (ans * a) % c;//这里再取了一次余
}
ans = ans % c;

这个算法在时间复杂度上没有改进,仍为O(b),不过已经好很多的,但是在c过大的条件下,还是很有可能超时,所以,我们推出以下的快速幂算法。

算法4.快速幂算法:

快速幂算法依赖于以下明显的公式:

int PowerMod(int a, int b, int c)
{
  int ans = 1;
  a = a % c;
  while(b>0) {
    if(b % 2 = = 1)
    ans = (ans * a) % c;
    b = b/2;
    a = (a * a) % c;
  }
  return ans;
}

本算法的时间复杂度为O(logb),能在几乎所有的程序设计(竞赛)过程中通过,是目前最常用的算法之一。

相信本文所述对大家算法设计的学习有一定的借鉴价值。

上一篇:构造函数不能声明为虚函数的原因及分析

栏    目:C代码

下一篇:C/C++实现贪吃蛇逐步运动效果

本文标题:C语言快速幂取模算法小结

本文地址:http://www.codeinn.net/misctech/133174.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有