基于pandas中expand的作用详解
时间:2020-10-17 10:59:04|栏目:Python代码|点击: 次
expand表示是否把series类型转化为DataFrame类型
下面代码中的n表示去掉下划线"_"的数量
代码如下:
import numpy as np import pandas as pd s2 = pd.Series(['a_b_c_f_j', 'c_d_e_f_h', np.nan, 'f_g_h_x_g']) print("-----------------------------------") print(s2.str.split('_')) print("-----------------------------------") print(s2.str.split('_').str.get(1)) print("-----------------------------------") print(s2.str.split('_').str[1]) print("---------------expand=True--------------------") expand1=s2.str.split('_', expand=True) print(expand1) print(type(expand1)) print("---------------expand=False--------------------") expand2=s2.str.split('_', expand=False) print(expand2) print(type(expand2)) print("##########################################################") print("---------------expand=True,n=1--------------------") expand1=s2.str.rsplit('_', expand=True,n=1) print(expand1) print("---------------expand=False,n=1--------------------") expand2=s2.str.rsplit('_', expand=False,n=1) print(expand2)
运行结果如下:
----------------------------------- 0 [a, b, c, f, j] 1 [c, d, e, f, h] 2 NaN 3 [f, g, h, x, g] dtype: object ----------------------------------- 0 b 1 d 2 NaN 3 g dtype: object ----------------------------------- 0 b 1 d 2 NaN 3 g dtype: object ---------------expand=True-------------------- 0 1 2 3 4 0 a b c f j 1 c d e f h 2 NaN NaN NaN NaN NaN 3 f g h x g <class 'pandas.core.frame.DataFrame'> ---------------expand=False-------------------- 0 [a, b, c, f, j] 1 [c, d, e, f, h] 2 NaN 3 [f, g, h, x, g] dtype: object <class 'pandas.core.series.Series'> ########################################################## ---------------expand=True,n=1-------------------- 0 1 0 a_b_c_f j 1 c_d_e_f h 2 NaN NaN 3 f_g_h_x g ---------------expand=False,n=1-------------------- 0 [a_b_c_f, j] 1 [c_d_e_f, h] 2 NaN 3 [f_g_h_x, g] dtype: object [Finished in 0.4s]
栏 目:Python代码
下一篇:python删除列表内容
本文标题:基于pandas中expand的作用详解
本文地址:http://www.codeinn.net/misctech/12711.html