详解C++实现线程安全的单例模式
在某些应用环境下面,一个类只允许有一个实例,这就是著名的单例模式。单例模式分为懒汉模式,跟饿汉模式两种。
首先给出饿汉模式的实现
正解:
template <class T> class singleton { protected: singleton(){}; private: singleton(const singleton&){};//禁止拷贝 singleton& operator=(const singleton&){};//禁止赋值 static T* m_instance; public: static T* GetInstance(); }; template <class T> T* singleton<T>::GetInstance() { return m_instance; } template <class T>
在实例化m_instance 变量时,直接调用类的构造函数。顾名思义,在还未使用变量时,已经对m_instance进行赋值,就像很饥饿的感觉。这种模式,在多线程环境下肯定是线程安全的,因为不存在多线程实例化的问题。
下面来看懒汉模式
template <class T> class singleton { protected: singleton(){}; private: singleton(const singleton&){}; singleton& operator=(const singleton&){}; static T* m_instance; public: static T* GetInstance(); }; template <class T> T* singleton<T>::GetInstance() { if( m_instance == NULL) { m_instance = new T(); } return m_instance; } template <class T> T* singleton<T>::m_instance = NULL;
懒汉模式下,在定义m_instance变量时先等于NULL,在调用GetInstance()方法时,在判断是否要赋值。这种模式,并非是线程安全的,因为多个线程同时调用GetInstance()方法,就可能导致有产生多个实例。要实现线程安全,就必须加锁。
下面给出改进之后的代码
template <class T>
class singleton
{
protected:
singleton(){};
private:
singleton(const singleton&){};
singleton& operator=(const singleton&){};
static T* m_instance;
static pthread_mutex_t mutex;
public:
static T* GetInstance();
};
template <class T>
T* singleton<T>::GetInstance()
{
pthread_mutex_lock(&mutex);
if( m_instance == NULL)
{
m_instance = new T();
}
pthread_mutex_unlock(&mutex);
return m_instance;
}
template <class T>
pthread_mutex_t singleton<T>::mutex = PTHREAD_MUTEX_INITIALIZER;
template <class T>
T* singleton<T>::m_instance = NULL;
这一切看起来都很完美,但是程序猿是一种天生就不知道满足的动物。他们发现GetInstance()方法,每次进来都要加锁,会影响效率。然而这并不是必须的,于是又对GetInstance()方法进行改进
template <class T> T* singleton<T>::GetInstance() { if( m_instance == NULL) { pthread_mutex_lock(&mutex); if( m_instance == NULL) { m_instance = new T(); } pthread_mutex_unlock(&mutex); } return m_instance; }
这也就是所谓的“双检锁”机制。但是有人质疑这种实现还是有问题,在执行 m_instance = new T()时,可能 类T还没有初始化完成,m_instance 就已经有值了。这样会导致另外一个调用GetInstance()方法的线程,获取到还未初始化完成的m_instance 指针,如果去使用它,会有意料不到的后果。其实,解决方法也很简单,用一个局部变量过渡下即可:
正解:
template <class T> T* singleton<T>::GetInstance() { if( m_instance == NULL) { pthread_mutex_lock(&mutex); if( m_instance == NULL) { T* ptmp = new T(); m_instance = ptmp; } pthread_mutex_unlock(&mutex); } return m_instance; }
到这里在懒汉模式下,也就可以保证线程安全了。
然而,在linux下面还有另一种实现。linux提供了一个叫pthread_once()的函数,它保证在一个进程中,某个函数只被执行一次。下面是使用pthread_once实现的线程安全的懒汉单例模式
template <class T> class singleton { protected: singleton(){}; private: singleton(const singleton&){}; singleton& operator=(const singleton&){}; static T* m_instance; static pthread_once_t m_once; public: static void Init(); static T* GetInstance(); }; template <class T> void singleton<T>::Init() { m_instance = new T(); } template <class T> T* singleton<T>::GetInstance() { pthread_once(&m_once,Init); return m_instance; } template <class T> pthread_once_t singleton<T>::m_once = PTHREAD_ONCE_INIT; template <class T> T* singleton<T>::m_instance = NULL;
上面的单例类使用了模板,对每一种类型的变量都能实例化出唯一的一个实例。
例如要实例化一个int类型
int *p = singleton<int>::GetInstance()
例如要实例化一个string类型
string *p = singleton<string>::GetInstance()
在上面的实现中,在实例化对象时,调用GetInstance()函数时都没有传递参数,这是犹豫不同的对象其初始化时参数个数都不一样。如果要支持不同类型的对象带参数初始化,则需要重载GetInstance函数。然而在c++11中,已经支持了可变参数函数。这里给出一个简单的例子
#ifndef _SINGLETON_H_ #define _SINGLETON_H_ template <class T> class singleton { protected: singleton(){}; private: singleton(const singleton&){}; singleton& operator=(const singleton&){}; static T* m_instance; public: template <typename... Args> static T* GetInstance(Args&&... args) { if(m_instance == NULL) m_instance = new T(std::forward<Args>(args)...); return m_instance; } static void DestroyInstance() { if(m_instance ) delete m_instance; m_instance = NULL; } }; template <class T> T* singleton<T>::m_instance = NULL; #endif
测试函数
#include <iostream> #include <string> #include "singleton.h" using namespace std; struct A { A(int a ,int b):_a(a),_b(b) {} int _a; int _b; }; int main() { int *p1 = singleton<int>::GetInstance(5); int *p2 = singleton<int>::GetInstance(10); cout << *p1 << " " << *p2 <<endl; string *p3 = singleton<string>::GetInstance("aa"); string *p4 = singleton<string>::GetInstance("bb"); cout << *p3 << " " << *p4 <<endl; A *p5 = singleton<A>::GetInstance(1,2); A *p6 = singleton<A>::GetInstance(4,5); cout << p5->_a << " " << p6->_a<<endl; return 0; }
运行结果如下