python 划分数据集为训练集和测试集的方法
时间:2020-11-25 11:43:27|栏目:Python代码|点击: 次
sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split
from sklearn.cross_validation import train_test_split #x为数据集的feature熟悉,y为label. x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)
得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。
若train_test_split传入的是带有label的数据,则如下代码:
from sklearn.cross_validation import train_test_split #dat为数据集,含有feature和label. train, test = train_test_split(dat, test_size = 0.3)
train,test含有feature和label的。
自己写了一个函数:
#X:含label的数据集:分割成训练集和测试集 #test_size:测试集占整个数据集的比例 def trainTestSplit(X,test_size=0.3): X_num=X.shape[0] train_index=range(X_num) test_index=[] test_num=int(X_num*test_size) for i in range(test_num): randomIndex=int(np.random.uniform(0,len(train_index))) test_index.append(train_index[randomIndex]) del train_index[randomIndex] #train,test的index是抽取的数据集X的序号 train=X.ix[train_index] test=X.ix[test_index] return train,test
栏 目:Python代码
下一篇:Python3.7基于hashlib和Crypto实现加签验签功能(实例代码)
本文地址:http://www.codeinn.net/misctech/26017.html