基于R语言 数据检验详解
时间:2023-03-02 09:34:35|栏目:|点击: 次
1. W检验(Shapiro–Wilk (夏皮罗–威克尔 ) W统计量检验)
目标:检验数据是否符合某正态分布,如:标准正态分布N(0,1)
R函数:shapiro.test().
结果含义:当p值小于某个显著性水平α(比如0.05)时,则认为样本不是来自正态分布的总体,否则认为样本来自正态分布的总体。
2. K检验(经验分布的Kolmogorov-Smirnov检验)
目标:检验数据的分布是否符合函数F(x)
R函数:ks.test(),如果P值很小,说明拒绝原假设,表明数据不符合F(n,m)分布。
3. 相关性检验:
R函数:cor.test()
cor.test(x, y, alternative = c("two.sided", "less", "greater"), method = c("pearson", "kendall", "spearman"), exact = NULL, conf.level = 0.95, ...)
结果含义:如果p值很小,则拒绝原假设,认为x,y是相关的。否则认为是不相关的。
4. T检验
目标:用于正态总体均值假设检验,单样本,双样本都可以。
R函数:t.test()
t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95, ...)
结果意义:P值小于显著性水平时拒绝原假设,否则,接受原假设。具体的假设要看所选择的是双边假设还是单边假设(又分小于和大于)
5. 正态总体方差检验
R函数:t.test()
t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95, ...)
结果意义:P值小于显著性水平时拒绝原假设,否则,接受原假设。具体的假设要看所选择的是双边假设还是单边假设(又分小于和大于)
6. 二项分布总体假设检验
binom.test(x, n, p = 0.5, alternative = c("two.sided", "less", "greater"), conf.level = 0.95)
原假设:p=p0,p<p0,p<p0 计算结果p-值很小,表示拒绝假设,否则为接受假设.
7. Pearson 拟合优度χ2检验
chisq.test(x, y = NULL, correct = TRUE, p = rep(1/length(x), length(x)), rescale.p = FALSE, simulate.p.value = FALSE, B = 2000)
原假设H0:X符合F分布。
8. Fisher精确的独立检验:
fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE, control = list(), or = 1, alternative = "two.sided", conf.int = TRUE, conf.level = 0.95)
原假设:X,Y相关。
9. McNemar检验:
mcnemar.test(x, y = NULL, correct = TRUE)
原假设:两组数据的频数没有区别。
10. 秩相关检验
cor.test(x, y, alternative = c("two.sided", "less", "greater"), method = "spearman", conf.level = 0.95, ...)
原假设:x,y相关.
11. Wilcoxon秩检验
wilcox.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, exact = NULL, correct = TRUE, conf.int = FALSE, conf.level = 0.95, ...)
原假设:中位数大于,小于,不等于mu