详解Java Fibonacci Search斐波那契搜索算法代码实现
一, 斐波那契搜索算法简述
斐波那契搜索(Fibonacci search) ,又称斐波那契查找,是区间中单峰函数的搜索技术。
斐波那契搜索采用分而治之的方法,其中我们按照斐波那契数列对元素进行不均等分割。此搜索需要对数组进行排序。
与二进制搜索不同,在二进制搜索中,我们将元素分成相等的两半以减小数组范围-在斐波那契搜索中,我们尝试使用加法或减法来获得较小的范围。
斐波那契数列的公式是:
Fibo(N)=Fibo(N-1)+Fibo(N-2)
此系列的前两个数字是Fibo(0) = 0和Fibo(1) = 1
。因此,根据此公式,该级数看起来像是0、1、1、2、3、5、8、13、21。。。这里要注意的有趣观察是:
Fibo(N-2)
大约是1/3的Fibo(N)
Fibo(N-1)
大约是2/3的Fibo(N)
因此,当我们使用斐波那契数列来划分范围时,它会以与上述相同的比率进行分割。
二,斐波那契搜索算法代码实现
/** * * @param integers * @param elementToSearch * @return */ public static int fibonacciSearch(int[] integers, int elementToSearch) { int fibonacciMinus2 = 0; int fibonacciMinus1 = 1; int fibonacciNumber = fibonacciMinus2 + fibonacciMinus1; int arrayLength = integers.length; while (fibonacciNumber < arrayLength) { fibonacciMinus2 = fibonacciMinus1; fibonacciMinus1 = fibonacciNumber; fibonacciNumber = fibonacciMinus2 + fibonacciMinus1; } int offset = -1; while (fibonacciNumber > 1) { int i = Math.min(offset+fibonacciMinus2, arrayLength-1); if (integers[i] < elementToSearch) { fibonacciNumber = fibonacciMinus1; fibonacciMinus1 = fibonacciMinus2; fibonacciMinus2 = fibonacciNumber - fibonacciMinus1; offset = i; } else if (integers[i] > elementToSearch) { fibonacciNumber = fibonacciMinus2; fibonacciMinus1 = fibonacciMinus1 - fibonacciMinus2; fibonacciMinus2 = fibonacciNumber - fibonacciMinus1; } else return i; } if (fibonacciMinus1 == 1 && integers[offset+1] == elementToSearch) return offset+1; return -1; }
三,斐波那契搜索算法总结
首先从找到斐波那契数列中最接近但大于数组长度的数字开始。这fibonacciNumber是在13刚好大于数组长度10时发生的。
接下来,我们比较数组的元素,并根据该比较,执行以下操作之一:
- 将要搜索的元素与处的元素进行比较fibonacciMinus2,如果值匹配,则返回索引。
- 如果elementToSearch比当前元素时,我们移动在斐波纳契数列上一步,而改变的值fibonacciNumber,fibonacciMinus1与fibonacciMinus2相应。偏移量将重置为当前索引。
- 如果elementToSearch比当前元素小,我们继续前进后退两步在斐波纳契数列和改变的值fibonacciNumber,fibonacciMinus1与fibonacciMinus2相应。
输出结果:
时间复杂度
此搜索的最坏情况时间复杂度为O(log(N))。
空间复杂度
虽然我们需要将三个数字保存在斐波那契数列中并要搜索的元素,但我们需要四个额外的空间单位。
对空间的要求不会随着输入数组的大小而增加。因此,可以说斐波那契搜索的空间复杂度为O(1)。
当除法运算是CPU要执行操作时,将使用此搜索。二进制搜索之类的算法由于使用除法对数组进行划分,因此效果较差。
这种搜索的另一个好处是当输入数组的元素无法放入RAM中时。在这种情况下,此算法执行的局部操作范围可帮助其更快地运行。
四,跳转搜索算法完整代码
If you are interested, try it.
public class SearchAlgorithms { /** * * @param integers * @param elementToSearch * @return */ public static int fibonacciSearch(int[] integers, int elementToSearch) { int fibonacciMinus2 = 0; int fibonacciMinus1 = 1; int fibonacciNumber = fibonacciMinus2 + fibonacciMinus1; int arrayLength = integers.length; while (fibonacciNumber < arrayLength) { fibonacciMinus2 = fibonacciMinus1; fibonacciMinus1 = fibonacciNumber; fibonacciNumber = fibonacciMinus2 + fibonacciMinus1; } int offset = -1; while (fibonacciNumber > 1) { int i = Math.min(offset+fibonacciMinus2, arrayLength-1); if (integers[i] < elementToSearch) { fibonacciNumber = fibonacciMinus1; fibonacciMinus1 = fibonacciMinus2; fibonacciMinus2 = fibonacciNumber - fibonacciMinus1; offset = i; } else if (integers[i] > elementToSearch) { fibonacciNumber = fibonacciMinus2; fibonacciMinus1 = fibonacciMinus1 - fibonacciMinus2; fibonacciMinus2 = fibonacciNumber - fibonacciMinus1; } else return i; } if (fibonacciMinus1 == 1 && integers[offset+1] == elementToSearch) return offset+1; return -1; } /** * 打印方法 * @param elementToSearch * @param index */ public static void print(int elementToSearch, int index) { if (index == -1){ System.out.println(elementToSearch + " 未找到"); } else { System.out.println(elementToSearch + " 在索引处找到: " + index); } } //测试一下 public static void main(String[] args) { int index = fibonacciSearch(new int[]{3, 22, 27, 47, 57, 67, 89, 91, 95, 99}, 67); print(67, index); } }
栏 目:JAVA代码
下一篇:java基础详细笔记之异常处理
本文标题:详解Java Fibonacci Search斐波那契搜索算法代码实现
本文地址:http://www.codeinn.net/misctech/223532.html