Java实现黄金分割法的示例代码
1、概述
黄金分割法是一种区间收缩方法。
所谓区间收缩方法,指的是将含有最优解的区间逐步缩小,直至区间长度为零的方法。比如,为求函数f(x)在区间[a,b]上的最小值点,可在该区间中任取两点x1、x2,通过比较函数f(x)在这两点的函数值或者导数值等,来决定去掉一部分区间[a,x1?]或者[x2?,b],从而使搜索区间长度变小,如此迭代,直至区间收缩为一点为止,或区间长度小于某给定的精度为止。
对于区间[a,b]上的单峰函数f(x),可以在其中任意选取两点x1?、x2?,通过比较这两点的函数值,就可以将搜索区间缩小。比如说,如果f(x1?)<f(x2?),则选取[a1?,b1?]=[a,x2?],如果f(x1?)> f(x2?),则选取[a1?,b1?]=[x1?,b],如果f(x1?)=f(x2),则选取[a1?,b1?]=[x1?,x2?],这样就得到f(x)的更小的搜索区间[a1?,b1?],然后根据这一方法再进行划分,得到一系列搜索区间满足
于是对事先给定的某个精度ε,当
时,可以将f(x)的最小值点近似地取为
单峰函数与搜索区间的定义如下:
如何选取x1和x2才能使得算法的效率更高?
这里推导过程不在详细讨论,直接给出满足对称取点、等比收缩和单点计算三个原则的分点。
或者
2、黄金分割法
算法描述如下:
这个算法非常理想,整个迭代过程中。除最初计算分点时使用过一次乘法外,后边的分点全部都由加减法完成,并且每次迭代只需计算一个分点的函数值。但是,在实际应用中,该方法存在一定的缺陷。这种缺陷主要来源于无理数(-1+√5)/2的取值。这里我们只取了小数点后三位数。因而有一定误差,所以在迭代过程中,经过多次累计,误差就会很大,从而导致最终选取的两点并不一定是我们所期望的那两点,事实上,常常发生x2小于x1的情形。
为避免这种情况的出现,我们也可以通过将无理数(-1+√5)/2小数点后面的位数提高来避免算法的这一缺陷。不过这样做的效果未必很好。因为我们不知道在算法中到底要经过多少次迭代,当迭代次数很大时,这种做法依然是不能奏效的。因此,我们在程序中每次计算分点时不得不根据算法原理,使用一次乘法,即第二个分点不用加减法产生,而直接用乘法计算得出。由此即可避免累计误差所带来的缺陷。我们仍假设f(x)是区间[a,b]上的单峰函数。修改后的黄金分割法的计算框图如下图所示。
3、修改后的黄金分割算法
修改后的黄金分割算法如下:
4、编程实现修改后的黄金分割算法
用黄金分割法求函数 f(x)=x?-12x-11在区间[0,10]上的最小值点,取ε=0.01。
import java.math.BigDecimal; /** * 黄金分割法测试 */ public class GoldenCut { public static final BigDecimal C=new BigDecimal("0.01"); public static BigDecimal end=null; /** *x^3-12x-11 * @param x 输入参数x * @return x^3-12x-11 */ public static BigDecimal ComputeFx(BigDecimal x){ return x.pow(3).subtract(new BigDecimal("12").multiply(x)).subtract(new BigDecimal("11")) .setScale(10,BigDecimal.ROUND_HALF_EVEN); } /** * a+0.382*(b-a) * @param a * @param b * @return a+0.382*(b-a) */ public static BigDecimal Compute382(BigDecimal a,BigDecimal b){ return a.add(new BigDecimal("0.382").multiply(b.subtract(a))) .setScale(10,BigDecimal.ROUND_HALF_EVEN); } /** * a+0.618(b-a) * @param a * @param b * @return */ public static BigDecimal Compute618(BigDecimal a,BigDecimal b){ return a.add(new BigDecimal("0.618").multiply(b.subtract(a))) .setScale(10,BigDecimal.ROUND_HALF_EVEN); } /** * a+b-x1 * @param a * @param b * @param x1 * @return */ public static BigDecimal Subtractabx1(BigDecimal a,BigDecimal b,BigDecimal x1){ return a.add(b).subtract(x1) .setScale(10,BigDecimal.ROUND_HALF_EVEN); } //判断是否满足精度 b-a<C? public static boolean OK(BigDecimal a,BigDecimal b){ return b.subtract(a).compareTo(C) < 0; } //输出最优解 public static BigDecimal Success(BigDecimal a, BigDecimal b){ return (a.add(b)).divide(new BigDecimal("2")) .setScale(10,BigDecimal.ROUND_HALF_EVEN); } //修改后的黄金分割法 public static void goldenTest1(BigDecimal a,BigDecimal b){ System.out.println("初始化"); BigDecimal x1=Compute382(a,b); BigDecimal x2=Subtractabx1(a,b,x1); BigDecimal f1=ComputeFx(x1); BigDecimal f2=ComputeFx(x2); System.out.println("x1="+x1); System.out.println("x2="+x2); System.out.println("f1="+f1); System.out.println("f2="+f2); System.out.println("迭代区间如下:"); int count=0; //迭代次数 while(!OK(a,b)){//只要不满足精度就一直迭代 System.out.println("["+a+"\t,\t"+b+"]"); count++; //迭代次数+1 if(f1.compareTo(f2)==1){//f1>f2 a=x1; if(OK(a,b)){ //精度判断 end = Success(a, b); break; }else{ f1=f2; x1=x2; x2=Compute618(a,b); f2=ComputeFx(x2); } }else{ b=x2; if(OK(a,b)){ end = Success(a, b); break; }else{ f2=f1; x2=x1; x1=Compute382(a,b); f1=ComputeFx(x1); } } } System.out.println("迭代结束,迭代次数"+count); } public static void main(String[] args) { BigDecimal a=new BigDecimal("0"); BigDecimal b=new BigDecimal("10"); goldenTest1(a,b); System.out.println("最优解为x*="+end); System.out.println("f(x*)="+ComputeFx(end)); } }
由运行结果可以看到,迭代次数15次,最优解为x*=2.0009942948,f(x*)=-26.9999940673。迭代区间如下:
可以证明,黄金分割法是线性收敛的。
上一篇:Java多线程 Callable、Future 和FutureTask
栏 目:JAVA代码
本文标题:Java实现黄金分割法的示例代码
本文地址:http://www.codeinn.net/misctech/218323.html