Java集合和数据结构排序实例详解
概念
排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
平时的上下文中,如果提到排序,通常指的是排升序(非降序)。
通常意义上的排序,都是指的原地排序(in place sort)。
稳定性: 两个相等的数据,如果经过排序后,排序算法能保证其相对位置不发生变化,则我们称该算法是具备稳定性的排序算法。
插入排序
直接插入排序
整个区间被分为
- 有序区间
- 无序区间
每次选择无序区间的第一个元素,在有序区间内选择合适的位置插入
代码实现
逻辑代码:
public class InsertSort { public static void insertSort(int[] array) { for (int i = 1; i < array.length; i++) { int temp = array[i]; int j = i-1; for (; j >= 0; j--) { if (array[j] > temp) { array[j+1] = array[j]; }else { break; } } array[j+1] = temp; } } }
调试代码:
public class TestDemo { public static void main(String[] args) { int[] array = {10,3,2,7,19,78,65,127}; System.out.println("排序前:" + Arrays.toString(array)); InsertSort.insertSort(array); System.out.println("排序后:" + Arrays.toString(array)); } }
该代码的执行结果为:
可见,实现了对原数组的升序排序。
性能分析
时间复杂度:
最好情况:O(n)【数据有序】
平均情况:O(n2)
最坏情况:O(n2)【数据逆序】
空间复杂度:O(1)
稳定性:稳定
对于直接插入排序:越有序越快。另外,直接插入排序会用在一些排序的优化上。
希尔排序
希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达=1时, 所有记录在统一组内排好序。
希尔排序是对直接插入排序的优化。
当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
代码实现
逻辑代码:
public class ShellSort { public static void shell(int[] array,int gap) { for (int i = gap; i < array.length; i = i + gap) { int temp = array[i]; int j = i-gap; for (; j >= 0; j = j-gap) { if (array[j] > temp) { array[j+gap] = array[j]; }else { break; } } array[j+gap] = temp; } } public static void shellSort(int[] array) { int[] drr = {5,3,1};//增量数组-->没有明确的规定,但保证为素数的增量序列 for (int i = 0; i < drr.length; i++) { shell(array,drr[i]); } } }
测试代码:
public class TestDemo { public static void main(String[] args) { int[] array = {10,3,2,7,19,78,65,127}; System.out.println("排序前:" + Arrays.toString(array)); ShellSort.shellSort(array); System.out.println("排序后:" + Arrays.toString(array)); } }
该代码的执行结果为:
可见,实现了对原数组的升序排序。
性能分析
时间复杂度:
最好情况:O(n)【数据有序】
平均情况:O(n1.3)
最坏情况: O(n2) 【比较难构造】
空间复杂度:O(1)
稳定性:不稳定
选择排序
直接选择排序
每一次从无序区间选出最大(或最小)的一个元素,存放在无序区间的最后(或最前),直到全部待排序的数据元素排完 。
代码实现
逻辑代码:
public class SelectSort { public static void selectSort(int[] array) { for (int i = 0; i < array.length-1; i++) { for (int j = i+1; j < array.length; j++) { if (array[i] > array[j]) { int temp = array[j]; array[j] = array[i]; array[i] = temp; } } } } }
测试代码:
public class TestDemo { public static void main(String[] args) { int[] array = {10,3,2,7,19,78,65,127}; System.out.println("排序前:" + Arrays.toString(array)); SelectSort.selectSort(array); System.out.println("排序后:" + Arrays.toString(array)); } }
该代码的执行结果为:
可见,实现了对原数组的升序排序。
性能分析
时间复杂度 : 不管是最好情况还是最坏情况都是O(n2) 【数据不敏感】
空间复杂度: O(1)
稳定性:不稳定
堆排序
基本原理也是选择排序,只是不在使用遍历的方式查找无序区间的最大的数,而是通过堆来选择无序区间的最大的数。
注意:排升序要建大堆;排降序要建小堆。
代码实现
逻辑代码:
public class HeapSort { public static void heapSort(int[] array) { PriorityQueue<Integer> priorityQueue = new PriorityQueue<>(new Comparator<Integer>() { @Override public int compare(Integer o1, Integer o2) { return o1-o2; } }); for (int i = 0; i < array.length; i++) { priorityQueue.add(array[i]); } for (int i = 0; i < array.length; i++) { array[i] = priorityQueue.poll(); } } }
测试代码:
public class TestDemo { public static void main(String[] args) { int[] array = {10,3,2,7,19,78,65,127}; System.out.println("排序前:" + Arrays.toString(array)); HeapSort.heapSort(array); System.out.println("排序后:" + Arrays.toString(array)); } }
该代码的执行结果为:
可见,实现了对原数组的升序排序。
性能分析
时间复杂度:不管是最好的情况还是最坏的情况都是O(n * log(n)) 。
空间复杂度:O(1)。
稳定性:不稳定
交换排序
冒泡排序
在无序区间,通过相邻数的比较,将最大的数冒泡到无序区间的最后,持续这个过程,直到数组整体有序。
代码实现
逻辑代码:
public class BubbleBort { public static void bubbleBort(int[] array) { for (int i = 0; i < array.length-1; i++) { for (int j = 0; j < array.length-i-1; j++) { if (array[j] > array[j+1]) { int temp = array[j]; array[j] = array[j+1]; array[j+1] = temp; } } } } }
测试代码:
public class TestDemo { public static void main(String[] args) { int[] array = {10,3,2,7,19,78,65,127}; System.out.println("排序前:" + Arrays.toString(array)); BubbleBort.bubbleBort(array); System.out.println("排序后:" + Arrays.toString(array)); } }
该代码的执行结果为:
可见,实现了对原数组的升序排序。
性能分析
时间复杂度:
最好情况:O(n)【数据有序】
平均情况:O(n2)
最坏情况: O(n2) 【数据逆序】
空间复杂度:O(1)。
稳定性:稳定
快速排序
- 从待排序区间选择一个数,作为基准值(pivot);
- Partition: 遍历整个待排序区间,将比基准值小的(可以包含相等的)放到基准值的左边,将比基准值大的(可以包含相等的)放到基准值的右边;
- 采用分治思想,对左右两个小区间按照同样的方式处理,直到小区间的长度 = 1,代表已经有序,或者小区间的长度 = 0,代表没有数据。
代码实现
逻辑代码:
public class QuickSort { public static void quick(int[] array,int low,int high) { if (low < high) { int piv = piovt(array,low,high);//找基准 quick(array,low,piv-1); quick(array,piv+1,high); } } private static int piovt(int[] array,int start,int end) { int temp = array[start]; while (start < end) { while (start < end && array[end] >= temp) { end--; } array[start] = array[end]; while (start < end && array[start] < temp) { start++; } array[end] = array[start]; } array[start] = temp; return start; } public static void quickSort(int[] array) { quick(array,0,array.length-1); } }
测试代码:
public class TestDemo { public static void main(String[] args) { int[] array = {10,3,2,7,19,78,65,127}; System.out.println("排序前:" + Arrays.toString(array)); QuickSort.quickSort(array); System.out.println("排序后:" + Arrays.toString(array)); } }
该代码的执行结果为:
可见,实现了对原数组的升序排序。
性能分析
时间复杂度:
最好情况:O(n * log(n))
平均情况:O(n * log(n))
最坏情况: O(n2)
空间复杂度:
最好情况:O(log(n))
平均情况:O(log(n))
最坏情况:O(n)
稳定性:不稳定
非递归实现快速排序
代码实现
逻辑代码:
/** * 非递归实现快速排序 */ public class QuickSortNor { public static void quickSortNor(int[] array) { int low = 0; int high = array.length - 1; int piv = piovt(array, low, high); Stack<Integer> stack = new Stack<>(); if (piv > low + 1) { stack.push(low); stack.push(piv - 1); } if (piv < high - 1) { stack.push(piv + 1); stack.push(high); } while (!stack.isEmpty()) { high = stack.pop(); low = stack.pop(); piv = piovt(array, low, high); if (piv > low + 1) { stack.push(low); stack.push(piv - 1); } if (piv < high - 1) { stack.push(piv + 1); stack.push(high); } } } private static int piovt(int[] array, int start, int end) { int temp = array[start]; while (start < end) { while (start < end && array[end] >= temp) { end--; } array[start] = array[end]; while (start < end && array[start] < temp) { start++; } array[end] = array[start]; } array[start] = temp; return start; } }
测试代码:
public class TestDemo { public static void main(String[] args) { int[] array = {10,3,2,7,19,78,65,127}; System.out.println("排序前:" + Arrays.toString(array)); QuickSortNor.quickSortNor(array); System.out.println("排序后:" + Arrays.toString(array)); } }
该代码的执行结果为:
可见,实现了对原数组的升序排序。
性能分析
时间复杂度: O(n * log(n))
空间复杂度:
最好情况:O(log(n))
最坏情况:O(n)
稳定性:不稳定
归并排序
归并排序
归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
代码实现
逻辑代码:
public class MergeSort { public static void merge(int[] array, int start, int mid, int end) { int s1 = start; int s2 = mid + 1; int[] temp = new int[end - start + 1]; int k = 0; while (s1 <= mid && s2 <= end) { if (array[s1] <= array[s2]) { temp[k++] = array[s1++]; } else { temp[k++] = array[s2++]; } } while (s1 <= mid) { temp[k++] = array[s1++]; } while (s2 <= end) { temp[k++] = array[s2++]; } for (int i = 0; i < temp.length; i++) { array[i + start] = temp[i]; } } public static void mergeSortInternal(int[] array, int low, int high) { if (low >= high) return; //先分解 int mid = (low + high) / 2; mergeSortInternal(array, low, mid); mergeSortInternal(array, mid + 1, high); //再合并 merge(array, low, mid, high); } public static void mergeSort(int[] array) { mergeSortInternal(array, 0, array.length - 1); } }
测试代码:
public class TestDemo { public static void main(String[] args) { int[] array = {10,3,2,7,19,78,65,127}; System.out.println("排序前:" + Arrays.toString(array)); MergeSort.mergeSort(array); System.out.println("排序后:" + Arrays.toString(array)); } }
该代码的执行结果为:
可见,实现了对原数组的升序排序。
性能分析
时间复杂度: O(n * log(n))
空间复杂度:O(n)
稳定性:稳定
非递归实现归并排序
代码实现
逻辑代码:
/** * 非递归实现归并排序 */ public class MergeSortNor { public static void merge(int[] array, int gap) { int s1 = 0; int e1 = s1 + gap - 1; int s2 = e1 + 1; int e2 = s2 + gap - 1 < array.length ? s2 + gap - 1 : array.length - 1; int[] temp = new int[array.length]; int k = 0; while (s2 < array.length) { while (s1 <= e1 && s2 <= e2) { if (array[s1] <= array[s2]) { temp[k++] = array[s1++]; } else { temp[k++] = array[s2++]; } } while (s1 <= e1) { temp[k++] = array[s1++]; } while (s2 <= e2) { temp[k++] = array[s2++]; } s1 = e2+1; e1 = s1+gap-1; s2 = e1+1; e2 = s2 + gap - 1 < array.length ? s2 + gap - 1 : array.length - 1; } while (s1 < array.length) { temp[k++] = array[s1++]; } for (int i = 0; i < temp.length; i++) { array[i] = temp[i]; } } public static void mergeSortNor(int[] array) { for (int i = 1; i < array.length; i *= 2) { merge(array, i); } } }
测试代码:
public class TestDemo { public static void main(String[] args) { int[] array = {10,3,2,7,19,78,65,127}; System.out.println("排序前:" + Arrays.toString(array)); MergeSortNor.mergeSortNor(array); System.out.println("排序后:" + Arrays.toString(array)); } }
该代码的执行结果为:
可见,实现了对原数组的升序排序。
性能分析
时间复杂度: O(n * log(n))
空间复杂度:O(n)
稳定性:稳定
海量数据的排序问题
外部排序:排序过程需要在磁盘等外部存储进行的排序
前提:内存只有 1G,需要排序的数据有 100G
因为内存中因为无法把所有数据全部放下,所以需要外部排序,而归并排序是最常用的外部排序。
- 先把文件切分成 200 份,每个 512 M
- 分别对 512 M 排序,因为内存已经可以放的下,所以任意排序方式都可以
- 进行 200 路归并,同时对 200 份有序文件做归并过程,最终结果就有序了
排序总结
总结
上一篇:Java中的Native方法
栏 目:JAVA代码
本文标题:Java集合和数据结构排序实例详解
本文地址:http://www.codeinn.net/misctech/216337.html