欢迎来到代码驿站!

JAVA代码

当前位置:首页 > 软件编程 > JAVA代码

Java 详细讲解用堆解决Top-k问题

时间:2022-09-21 08:29:56|栏目:JAVA代码|点击:

要解决 top-k 问题,我们应该先熟悉一种数据结构 - 堆(优先级队列),已经了解的朋友可以跳过哦。

1、什么是堆?

堆结构

堆其实就是一种二叉树,但是普通的二叉树是以链式结构进行储存数据的,而堆是以数组进行顺序存储数据的。那么什么样的二叉树才适合用顺序存储的方式呢?

我们假设一颗普通的二叉树可以用数组存储,那么就可以得到如下结构:

在这里插入图片描述

我们可以看到,当二叉树中间有空值时,数组的存储空间会被浪费,那么什么情况下空间才不会被浪费呢? 那就是完全二叉树。

在这里插入图片描述

从以上结构中,我们不能用链式结构的指针来访问孩子节点或者父亲节点,只能通过对应下标来访问,其实也比较简单。

例如下图:

已知 2 节点的下标是1,那么

他的左孩子下标是:2 * 2 + 1 = 3

他的右孩子下标是:2 * 2 + 2 = 4

相反,已知 1 节点的下标是3,3 节点的下标是4,那么

1 节点的父亲节点下标是:(3 - 1) / 2 = 1

3 节点的父亲节点下标是:(4 - 1) / 2 = 1

在这里插入图片描述

大根堆 VS 小根堆

大根堆(最大堆)

大根堆保证,每颗二叉树的根节点都 大于 左右孩子节点

从最后一棵子树的根节点开始调整,来到每颗子树的根节点,使得每棵子树都向下调整为大根堆,最后再向下做最后调整,保证二叉树整体是大根堆(这个调整主要是为了后面的堆排序)。

在这里插入图片描述

具体调整过程如下:

在这里插入图片描述

在这里插入图片描述

怎么用代码实现呢?

我们首先从最后一棵子树调整,那么就要拿到最后一颗子树的根节点 parent ,我们知道数组最后一个节点下标是 len - 1,而这个节点是最后一棵子树的左孩子或者右孩子,根据孩子下标就可以拿到根节点下标( parent ) ,parent-- 就可以让每颗子树都进行调整,直到来到根节点,再向下调整最后一次,便可以得到大根堆。

在这里插入图片描述

// 将数组变成大根堆结构
public void createHeap(int[] arr){
    for (int i = 0; i < arr.length; i++) {
        elem[i] = arr[i];// 放入elem[],假设不需要扩容
        usedSize++;
    }
    // 得到根节点parent, parent--依次来到每颗子树的根节点,
    for (int parent = (usedSize-1-1)/2; parent >= 0; parent--) {
        // 依次向下搜索,使得每颗子树都变成大根堆
        shiftDown(parent,usedSize);
    }
}
// 向下搜索变成大根堆
public void shiftDown(int parent,int len){
    int child = parent*2+1;// 拿到左孩子
    while (child < len){
        // 如果有右孩子,比较左右孩子大小,得到较大的值和父节点比较 
        if (child+1 < len && (elem[child] < elem[child+1])){
            child++;
        }
        // 比较较大的孩子和父节点,看是否要交换
        int max = elem[parent] >= elem[child] ? parent : child;
        if (max == parent) break;// 如果不需要调整了,说明当前子树已经是大根堆了,直接 break
        swap(elem,parent,child);
        parent = child;// 继续向下检测,看是否要调整
        child = parent*2+1;
    }
}
public void swap(int[] arr,int i,int j){
  	int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

小根堆(最小堆)

小根堆保证,每颗二叉树的根节点都 小于 左右孩子节点

调整过程同上。

在这里插入图片描述

优先级队列(PriorityQueue)

在java中,提供了堆这种数据结构(PriorityQueue),也叫优先级队列,当我们创建一个这样的对象时,就得到了一个没有添加数据的 小根堆 ,我们可以向里面添加或者删除元素,每向里面删除或者添加一个元素,系统会整体进行一次调整,重新又调整为小根堆。

// 默认得到一个小根堆
PriorityQueue<Integer> smallHeap = new PriorityQueue<>();
smallHeap.offer(23);
smallHeap.offer(2);
smallHeap.offer(11);
System.out.println(smallHeap.poll());// 弹出2,剩余最小的元素就是11,会被调整到堆顶,下一次弹出
System.out.println(smallHeap.poll());// 弹出11

 // 如果需要得到大根堆,在里面传一个比较器
 PriorityQueue<Integer> BigHeap = new PriorityQueue<>(new Comparator<Integer>() {
     @Override
     public int compare(Integer o1, Integer o2) {
         return o2 - o1;
     }
 });

2、top-k问题解决思路

例:有一堆元素,让你找出前三个最小的元素。

思路一: 将数组从小到大排序,拿到数组前3个元素。但是可以发现这样时间复杂度太高,不可取。

思路二: 将元素全部放入一个堆结构中,然后弹出三个元素,每次弹出的元素都是当前堆最小的,那么弹出的三个元素就是前最小的三个元素。

这种思路可以做,但是假设我有1000000个元素,只弹出前三个最小的元素,那么就要用到大小为1000000的堆。这么做空间复杂度太高,不建议用这种方法。

思路三:

我们需要得到三个最小的元素,那么就建一个大小为3的堆,假设目前的堆结构中刚好放满了3个元素,那么这三个元素就是当前最小的三个元素。假设第四个元素是我们想要的元素之一,那么前三个至少有一个元素不是我们想要的,就需要弹出,那么弹出谁呢?

我们要得到的是前三个最小的元素,所以当前堆结构中最大的元素一定不是我们想要的,所以这里我们建一个大根堆。弹出该元素,然后放入第四个元素,直到遍历完整个数组。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

这样我们就得到了只含有前三个最小元素的堆,并且可以看到堆的大小一直都是3,而不是有多少数据就建多大的堆,然后再依次弹出元素就行了。

// 找前 k个最小的元素
public static int[] topK(int[] arr,int k){
     // 创建一个大小为 k的大根堆
     PriorityQueue<Integer> maxHeap = new PriorityQueue<>(k,new Comparator<Integer>() {
         @Override
         public int compare(Integer o1, Integer o2) {
             return o2 - o1;
         }
     });
     for (int i = 0; i < arr.length; i++) {
         if (i < k){
             // 放入前 k 个元素
             maxHeap.offer(arr[i]);
         }else{
             // 从第 k+1个元素开始进行判断是否要入堆
             if (maxHeap.peek() > arr[i]){
                 maxHeap.poll();
                 maxHeap.offer(arr[i]);
             }
         }
     }
     int[] ret = new int[k];
     for (int i = 0; i < k; i++) {
         ret[i] = maxHeap.poll();
     }
     return ret;
 }

以上就是top-k问题的基本思路,其他的类似问题也是这样解。

总结:

1、如果求前K个最大的元素,要建一个小根堆。

2、如果求前K个最小的元素,要建一个大根堆。

3、如果求第K大的元素,要建一个小根堆 ( 堆顶元素就是 )。

4、如果求第K小的元素,要建一个大根堆 ( 堆顶元素就是 )。

上一篇:springboot增加注解缓存@Cacheable的实现

栏    目:JAVA代码

下一篇:没有了

本文标题:Java 详细讲解用堆解决Top-k问题

本文地址:http://www.codeinn.net/misctech/214320.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有