深入了解SparkSQL的运用及方法
时间:2022-09-03 10:50:28|栏目:JAVA代码|点击: 次
一:SparkSQL
1.SparkSQL简介
Spark SQL是Spark的一个模块,用于处理结构化的数据,它提供了一个数据抽象DataFrame(最核心的编程抽象就是DataFrame),并且SparkSQL作为分布式SQL查询引擎。
Spark SQL就是将SQL转换成一个任务,提交到集群上运行,类似于Hive的执行方式。
2.SparkSQL运行原理
将Spark SQL转化为RDD,然后提交到集群执行。
3.SparkSQL特点
(1)容易整合,Spark SQL已经集成在Spark中
(2)提供了统一的数据访问方式:JSON、CSV、JDBC、Parquet等都是使用统一的方式进行访问
(3)兼容 Hive
(4)标准的数据连接:JDBC、ODBC
二、SparkSQL运用
package sql import org.apache.avro.ipc.specific.Person import org.apache.spark import org.apache.spark.rdd.RDD import org.apache.spark.sql import org.apache.spark.sql.catalyst.InternalRow import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession} import org.junit.Test class Intro { @Test def dsIntro(): Unit ={ val spark: SparkSession = new sql.SparkSession.Builder() .appName("ds intro") .master("local[6]") .getOrCreate() //导入隐算是shi转换 import spark.implicits._ val sourceRDD: RDD[Person] =spark.sparkContext.parallelize(Seq(Person("张三",10),Person("李四",15))) val personDS: Dataset[Person] =sourceRDD.toDS(); //personDS.printSchema()打印出错信息 val resultDS: Dataset[Person] =personDS.where('age>10) .select('name,'age) .as[Person] resultDS.show() } @Test def dfIntro(): Unit ={ val spark: SparkSession =new SparkSession.Builder() .appName("ds intro") .master("local") .getOrCreate() import spark.implicits._ val sourceRDD: RDD[Person] = spark.sparkContext.parallelize(Seq(Person("张三",10),Person("李四",15))) val df: DataFrame = sourceRDD.toDF()//隐shi转换 df.createOrReplaceTempView("person")//创建表 val resultDF: DataFrame =spark.sql("select name from person where age>=10 and age<=20") resultDF.show() } @Test def database1(): Unit ={ //1.创建sparkSession val spark: SparkSession =new SparkSession.Builder() .appName("database1") .master("local[6]") .getOrCreate() //2.导入引入shi子转换 import spark.implicits._ //3.演示 val sourceRDD: RDD[Person] =spark.sparkContext.parallelize(Seq(Person("张三",10),Person("李四",15))) val dataset: Dataset[Person] =sourceRDD.toDS() //Dataset 支持强类型的API dataset.filter(item => item.age >10).show() //Dataset 支持若弱类型的API dataset.filter('age>10).show() //Dataset 可以直接编写SQL表达式 dataset.filter("age>10").show() } @Test def database2(): Unit ={ val spark: SparkSession = new SparkSession.Builder() .master("local[6]") .appName("database2") .getOrCreate() import spark.implicits._ val dataset: Dataset[Person] =spark.createDataset(Seq(Person("张三",10),Person("李四",20))) //无论Dataset中放置的是什么类型的对象,最终执行计划中的RDD上都是internalRow //直接获取到已经分析和解析过得Dataset的执行计划,从中拿到RDD val executionRdd: RDD[InternalRow] =dataset.queryExecution.toRdd //通过将Dataset底层的RDD通过Decoder转成了和Dataset一样的类型RDD val typedRdd:RDD[Person] = dataset.rdd println(executionRdd.toDebugString) println() println() println(typedRdd.toDebugString) } @Test def database3(): Unit = { //1.创建sparkSession val spark: SparkSession = new SparkSession.Builder() .appName("database1") .master("local[6]") .getOrCreate() //2.导入引入shi子转换 import spark.implicits._ val dataFrame: DataFrame = Seq(Person("zhangsan", 15), Person("lisi", 20)).toDF() //3.看看DataFrame可以玩出什么花样 //select name from... dataFrame.where('age > 10) .select('name) .show() } // @Test // def database4(): Unit = { // //1.创建sparkSession // val spark: SparkSession = new SparkSession.Builder() // .appName("database1") // .master("local[6]") // .getOrCreate() // //2.导入引入shi子转换 // import spark.implicits._ // val personList=Seq(Person("zhangsan",15),Person("lisi",20)) // // //1.toDF // val df1: DataFrame =personList.toDF() // val df2: DataFrame =spark.sparkContext.parallelize(personList).toDF() // //2.createDataFrame // val df3: DataFrame =spark.createDataFrame(personList) // // //3.read // val df4: DataFrame =spark.read.csv("") // df4.show() // } //toDF()是转成DataFrame,toDs是转成Dataset // DataFrame就是Dataset[Row] 代表弱类型的操作,Dataset代表强类型的操作,中的类型永远是row,DataFrame可以做到运行时类型安全,Dataset可以做到 编译时和运行时都安全 @Test def database4(): Unit = { //1.创建sparkSession val spark: SparkSession = new SparkSession.Builder() .appName("database1") .master("local[6]") .getOrCreate() //2.导入引入shi子转换 import spark.implicits._ val personList=Seq(Person("zhangsan",15),Person("lisi",20)) //DataFrame代表弱类型操作是编译时不安全 val df: DataFrame =personList.toDF() //Dataset是强类型的 val ds: Dataset[Person] =personList.toDS() ds.map((person:Person) =>Person(person.name,person.age)) } @Test def row(): Unit ={ //1.Row如何创建,它是什么 //row对象必须配合Schema对象才会有列名 val p: Person =Person("zhangsan",15) val row: Row =Row("zhangsan",15) //2.如何从row中获取数据 row.getString(0) row.getInt(1) //3.Row也是样例类、 row match { case Row(name,age) => println(name,age) } } } case class Person(name: String, age: Int)
上一篇:java中的Object类的toSpring()方法
栏 目:JAVA代码
本文标题:深入了解SparkSQL的运用及方法
本文地址:http://www.codeinn.net/misctech/212669.html