Java实现平滑加权轮询算法之降权和提权详解
前言
上一篇讲了普通轮询、加权轮询的两种实现方式,重点讲了平滑加权轮询算法,并在文末留下了悬念:节点出现分配失败时降低有效权重值;成功时提高有效权重值(但不能大于weight值)。
本文在平滑加权轮询算法的基础上讲,还没弄懂的可以看上一篇文章。
现在来模拟实现:平滑加权轮询算法的降权和提权
1.两个关键点
节点宕机时,降低有效权重值;
节点正常时,提高有效权重值(但不能大于weight值);
注意:降低或提高权重都是针对有效权重。
2.代码实现
2.1.服务节点类
package com.yty.loadbalancingalgorithm.wrr; /** * String ip:负载IP * final Integer weight:权重,保存配置的权重 * Integer effectiveWeight:有效权重,轮询的过程权重可能变化 * Integer currentWeight:当前权重,比对该值大小获取节点 * 第一次加权轮询时:currentWeight = weight = effectiveWeight * 后面每次加权轮询时:currentWeight 的值都会不断变化,其他权重不变 * Boolean isAvailable:是否存活 */ public class ServerNode implements Comparable<ServerNode>{ private String ip; private final Integer weight; private Integer effectiveWeight; private Integer currentWeight; private Boolean isAvailable; public ServerNode(String ip, Integer weight){ this(ip,weight,true); } public ServerNode(String ip, Integer weight,Boolean isAvailable){ this.ip = ip; this.weight = weight; this.effectiveWeight = weight; this.currentWeight = weight; this.isAvailable = isAvailable; } public String getIp() { return ip; } public void setIp(String ip) { this.ip = ip; } public Integer getWeight() { return weight; } public Integer getEffectiveWeight() { return effectiveWeight; } public void setEffectiveWeight(Integer effectiveWeight) { this.effectiveWeight = effectiveWeight; } public Integer getCurrentWeight() { return currentWeight; } public void setCurrentWeight(Integer currentWeight) { this.currentWeight = currentWeight; } public Boolean isAvailable() { return isAvailable; } public void setIsAvailable(Boolean isAvailable){ this.isAvailable = isAvailable; } // 每成功一次,恢复有效权重1,不超过配置的起始权重 public void onInvokeSuccess(){ if(effectiveWeight < weight) effectiveWeight++; } // 每失败一次,有效权重减少1,无底线的减少 public void onInvokeFault(){ effectiveWeight--; } @Override public int compareTo(ServerNode node) { return currentWeight > node.currentWeight ? 1 : (currentWeight.equals(node.currentWeight) ? 0 : -1); } @Override public String toString() { return "{ip='" + ip + "', weight=" + weight + ", effectiveWeight=" + effectiveWeight + ", currentWeight=" + currentWeight + ", isAvailable=" + isAvailable + "}"; } }
2.2.平滑轮询算法降权和提权
package com.yty.loadbalancingalgorithm.wrr; import java.util.ArrayList; import java.util.List; /** * 加权轮询算法:加入存活状态,降权使宕机权重降低,从而不会被选中 */ public class WeightedRoundRobinAvailable { private static List<ServerNode> serverNodes = new ArrayList<>(); // 准备模拟数据 static { serverNodes.add(new ServerNode("192.168.1.101",1));// 默认为true serverNodes.add(new ServerNode("192.168.1.102",3,false)); serverNodes.add(new ServerNode("192.168.1.103",2)); } /** * 按照当前权重(currentWeight)最大值获取IP * @return ServerNode */ public ServerNode selectNode(){ if (serverNodes.size() <= 0) return null; if (serverNodes.size() == 1) return (serverNodes.get(0).isAvailable()) ? serverNodes.get(0) : null; // 权重之和 Integer totalWeight = 0; ServerNode nodeOfMaxWeight = null; // 保存轮询选中的节点信息 synchronized (serverNodes){ StringBuffer sb1 = new StringBuffer(); StringBuffer sb2 = new StringBuffer(); sb1.append(Thread.currentThread().getName()+"==加权轮询--[当前权重]值的变化:"+printCurrentWeight(serverNodes)); // 有限权重总和可能发生变化 for(ServerNode serverNode : serverNodes){ totalWeight += serverNode.getEffectiveWeight(); } // 选出当前权重最大的节点 ServerNode tempNodeOfMaxWeight = serverNodes.get(0); for (ServerNode serverNode : serverNodes) { if (serverNode.isAvailable()) { serverNode.onInvokeSuccess();//提权 sb2.append(Thread.currentThread().getName()+"==[正常节点]:"+serverNode+"\n"); } else { serverNode.onInvokeFault();//降权 sb2.append(Thread.currentThread().getName()+"==[宕机节点]:"+serverNode+"\n"); } tempNodeOfMaxWeight = tempNodeOfMaxWeight.compareTo(serverNode) > 0 ? tempNodeOfMaxWeight : serverNode; } // 必须new个新的节点实例来保存信息,否则引用指向同一个堆实例,后面的set操作将会修改节点信息 nodeOfMaxWeight = new ServerNode(tempNodeOfMaxWeight.getIp(),tempNodeOfMaxWeight.getWeight(),tempNodeOfMaxWeight.isAvailable()); nodeOfMaxWeight.setEffectiveWeight(tempNodeOfMaxWeight.getEffectiveWeight()); nodeOfMaxWeight.setCurrentWeight(tempNodeOfMaxWeight.getCurrentWeight()); // 调整当前权重比:按权重(effectiveWeight)的比例进行调整,确保请求分发合理。 tempNodeOfMaxWeight.setCurrentWeight(tempNodeOfMaxWeight.getCurrentWeight() - totalWeight); sb1.append(" -> "+printCurrentWeight(serverNodes)); serverNodes.forEach(serverNode -> serverNode.setCurrentWeight(serverNode.getCurrentWeight()+serverNode.getEffectiveWeight())); sb1.append(" -> "+printCurrentWeight(serverNodes)); System.out.print(sb2); //所有节点的当前信息 System.out.println(sb1); //打印当前权重变化过程 } return nodeOfMaxWeight; } // 格式化打印信息 private String printCurrentWeight(List<ServerNode> serverNodes){ StringBuffer stringBuffer = new StringBuffer("["); serverNodes.forEach(node -> stringBuffer.append(node.getCurrentWeight()+",") ); return stringBuffer.substring(0, stringBuffer.length() - 1) + "]"; } // 并发测试:两个线程循环获取节点 public static void main(String[] args) throws InterruptedException { // 循环次数 int loop = 18; new Thread(() -> { WeightedRoundRobinAvailable weightedRoundRobin1 = new WeightedRoundRobinAvailable(); for(int i=1;i<=loop;i++){ ServerNode serverNode = weightedRoundRobin1.selectNode(); System.out.println(Thread.currentThread().getName()+"==第"+i+"次轮询选中[当前权重最大]的节点:" + serverNode + "\n"); } }).start(); // new Thread(() -> { WeightedRoundRobinAvailable weightedRoundRobin2 = new WeightedRoundRobinAvailable(); for(int i=1;i<=loop;i++){ ServerNode serverNode = weightedRoundRobin2.selectNode(); System.out.println(Thread.currentThread().getName()+"==第"+i+"次轮询选中[当前权重最大]的节点:" + serverNode + "\n"); } }).start(); //main 线程睡了一下,再偷偷把 所有宕机 拉起来:模拟服务器恢复正常 Thread.sleep(5); for (ServerNode serverNode:serverNodes){ if(!serverNode.isAvailable()) serverNode.setIsAvailable(true); } } }
3.分析结果
执行结果:将执行结果的前中后四次抽出来分析
Thread-0==[正常节点]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=1, isAvailable=true}
Thread-0==[宕机节点]:{ip='192.168.1.102', weight=3, effectiveWeight=2, currentWeight=3, isAvailable=false}
Thread-0==[正常节点]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=2, isAvailable=true}
Thread-0==加权轮询--[当前权重]值的变化:[1,3,2] -> [1,-3,2] -> [2,-1,4]
Thread-0==第1次轮询选中[当前权重最大]的节点:{ip='192.168.1.102', weight=3, effectiveWeight=2, currentWeight=3, isAvailable=false}
……
Thread-1==[正常节点]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=6, isAvailable=true}
Thread-1==[宕机节点]:{ip='192.168.1.102', weight=3, effectiveWeight=-7, currentWeight=-21, isAvailable=false}
Thread-1==[正常节点]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=12, isAvailable=true}
Thread-1==加权轮询--[当前权重]值的变化:[6,-21,12] -> [6,-21,15] -> [7,-28,17]
Thread-1==第5次轮询选中[当前权重最大]的节点:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=12, isAvailable=true}
……
Thread-0==[正常节点]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=13, isAvailable=true}
Thread-0==[正常节点]:{ip='192.168.1.102', weight=3, effectiveWeight=3, currentWeight=-19, isAvailable=true}
Thread-0==[正常节点]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=12, isAvailable=true}
Thread-0==加权轮询--[当前权重]值的变化:[13,-19,12] -> [7,-19,12] -> [8,-16,14]
Thread-0==第15次轮询选中[当前权重最大]的节点:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=13, isAvailable=true}
……
Thread-1==[正常节点]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=2, isAvailable=true}
Thread-1==[正常节点]:{ip='192.168.1.102', weight=3, effectiveWeight=3, currentWeight=2, isAvailable=true}
Thread-1==[正常节点]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=2, isAvailable=true}
Thread-1==加权轮询--[当前权重]值的变化:[2,2,2] -> [2,2,-4] -> [3,5,-2]
Thread-1==第18次轮询选中[当前权重最大]的节点:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=2, isAvailable=true}
分析
一开始权重最高的节点虽然是宕机了,但是还是会被选中并返回;
“有效权重总和” 和 “当前权重总和”都减少了1,因为设置轮询到失败节点,都会自减1;
到第5次轮询时,当前权重已经变成了[7,-28,17],可以看出宕机节点越往后当前权重越小,所以后面根本不会再选中宕机节点,虽然没剔除故障节点,但却起到不分配宕机节点;
到第15次轮询时,有效权重已经恢复起始值,当前权重变为[8,-16,14],当前权重只能慢慢恢复,并不是节点一正常就立即恢复宕机过的节点,起到对故障节点的缓冲恢复(故障过的节点可能还存在问题);
最后1次轮询时,因为没有宕机节点,所以有效权重不变,当前权重已经恢复[3,5,-2],如果再轮询一次,那就会访问到一开始故障的节点了。
4.结论
降权起到缓慢“剔除”宕机节点的效果;提权起到缓冲恢复宕机节点的效果。
对比上一篇文章可以看到:
当前权重(currentWeight):针对的是节点的选择,受有效权重影响,起到缓慢“剔除”宕机节点和缓冲恢复宕机节点的效果,当前权重最高就会被选择;
有效权重(effectiveWeight):针对的是权重的变化,也即是降权和提权,降权/提权只会直接操作有效权重;
权重(weight):针对的是存储起始配置,限定有效权重的提权。