Android函数抽取壳的实现代码
0x0 前言
函数抽取壳这个词不知道从哪起源的,但我理解的函数抽取壳是那种将dex文件中的函数代码给nop,然后在运行时再把字节码给填回dex的这么一种壳。
函数抽取前:
函数抽取后:
很早之前就想写这类的壳,最近终于把它做出来了,取名为dpt。现在将代码分享出来,欢迎把玩。项目地址:https://github.com/luoyesiqiu/dpt-shell
0x1 项目的结构
dpt代码分为两个部分,一个是proccessor,另一个是shell。
proccessor是可以将普通apk处理成加壳apk的模块。它的主要功能有:
- 解压apk
- 提取apk中的dex的codeitem保存起来
- 修改Androidmanifest.xml中的Application类名
- 生成新的apk
流程如下:
shell模块最终生成的dex文件和so文件将被集成到需要加壳的apk中。它的要功能有:
- 处理App的启动
- 替换dexElements
- hook相关函数
- 调用目标Application
- codeitem文件读取
- codeitem填回
流程如下:
0x2 proccessor
proccessor比较重要的逻辑两点,AndroidManiest.xml的处理和Codeitem的提取
(1)处理Androidmanifest.xml
我们处理AndroidManifest.xml的操作主要是备份原Application的类名和写入壳的代理Application的类名。备份原Application类名目的是在壳的流程执行完成后,调用我们原APK的Application。写入壳的代理Application类名的目的是在app启动时尽早的启动我们的代理Application,这样我们就可以做一些准备工作,比如自定义加载dex,Hook一些函数等。我们知道,AndroidManifest.xml在生成apk后它不是以普通xml文件的格式来存放的,而是以axml格式来存放的。不过幸运的是,已经有许多大佬写了对axml解析和编辑的库,我们直接拿来用就行。这里用到的axml处理的库是ManifestEditor。
提取原Androidmanifest.xml Application完整类名代码如下,直接调用getApplicationName函数即可
public static String getValue(String file,String tag,String ns,String attrName){ byte[] axmlData = IoUtils.readFile(file); AxmlParser axmlParser = new AxmlParser(axmlData); try { while (axmlParser.next() != AxmlParser.END_FILE) { if (axmlParser.getAttrCount() != 0 && !axmlParser.getName().equals(tag)) { continue; } for (int i = 0; i < axmlParser.getAttrCount(); i++) { if (axmlParser.getNamespacePrefix().equals(ns) && axmlParser.getAttrName(i).equals(attrName)) { return (String) axmlParser.getAttrValue(i); } } } } catch (Exception e) { e.printStackTrace(); } return null; } public static String getApplicationName(String file) { return getValue(file,"application","android","name"); }
写入Application类名的代码如下:
public static void writeApplicationName(String inManifestFile, String outManifestFile, String newApplicationName){ ModificationProperty property = new ModificationProperty(); property.addApplicationAttribute(new AttributeItem(NodeValue.Application.NAME,newApplicationName)); FileProcesser.processManifestFile(inManifestFile, outManifestFile, property); }
(2) 提取CodeItem
CodeItem是dex文件中存放函数字节码相关数据的结构。下图显示的就是CodeItem大概的样子。
说是提取CodeItem,其实我们提取的是CodeItem中的insns,它里面存放的是函数真正的字节码。提取insns,我们使用的是Android源码中的dx工具,使用dx工具可以很方便的读取dex文件的各个部分。
下面的代码遍历所有ClassDef,并遍历其中的所有函数,再调用extractMethod对单个函数进行处理。
public static List<Instruction> extractAllMethods(File dexFile, File outDexFile) { List<Instruction> instructionList = new ArrayList<>(); Dex dex = null; RandomAccessFile randomAccessFile = null; byte[] dexData = IoUtils.readFile(dexFile.getAbsolutePath()); IoUtils.writeFile(outDexFile.getAbsolutePath(),dexData); try { dex = new Dex(dexFile); randomAccessFile = new RandomAccessFile(outDexFile, "rw"); Iterable<ClassDef> classDefs = dex.classDefs(); for (ClassDef classDef : classDefs) { ...... if(classDef.getClassDataOffset() == 0){ String log = String.format("class '%s' data offset is zero",classDef.toString()); logger.warn(log); continue; } ClassData classData = dex.readClassData(classDef); ClassData.Method[] directMethods = classData.getDirectMethods(); ClassData.Method[] virtualMethods = classData.getVirtualMethods(); for (ClassData.Method method : directMethods) { Instruction instruction = extractMethod(dex,randomAccessFile,classDef,method); if(instruction != null) { instructionList.add(instruction); } } for (ClassData.Method method : virtualMethods) { Instruction instruction = extractMethod(dex, randomAccessFile,classDef, method); if(instruction != null) { instructionList.add(instruction); } } } } catch (Exception e){ e.printStackTrace(); } finally { IoUtils.close(randomAccessFile); } return instructionList; }
处理函数的过程中发现没有代码(通常为native函数)或者insns的容量不足以填充return语句则跳过处理。这里就是对应函数抽取壳的抽取操作
private static Instruction extractMethod(Dex dex ,RandomAccessFile outRandomAccessFile,ClassDef classDef,ClassData.Method method) throws Exception{ String returnTypeName = dex.typeNames().get(dex.protoIds().get(dex.methodIds().get(method.getMethodIndex()).getProtoIndex()).getReturnTypeIndex()); String methodName = dex.strings().get(dex.methodIds().get(method.getMethodIndex()).getNameIndex()); String className = dex.typeNames().get(classDef.getTypeIndex()); //native函数 if(method.getCodeOffset() == 0){ String log = String.format("method code offset is zero,name = %s.%s , returnType = %s", TypeUtils.getHumanizeTypeName(className), methodName, TypeUtils.getHumanizeTypeName(returnTypeName)); logger.warn(log); return null; } Instruction instruction = new Instruction(); //16 = registers_size + ins_size + outs_size + tries_size + debug_info_off + insns_size int insnsOffset = method.getCodeOffset() + 16; Code code = dex.readCode(method); //容错处理 if(code.getInstructions().length == 0){ String log = String.format("method has no code,name = %s.%s , returnType = %s", TypeUtils.getHumanizeTypeName(className), methodName, TypeUtils.getHumanizeTypeName(returnTypeName)); logger.warn(log); return null; } int insnsCapacity = code.getInstructions().length; //insns容量不足以存放return语句,跳过 byte[] returnByteCodes = getReturnByteCodes(returnTypeName); if(insnsCapacity * 2 < returnByteCodes.length){ logger.warn("The capacity of insns is not enough to store the return statement. {}.{}() -> {} insnsCapacity = {}byte(s),returnByteCodes = {}byte(s)", TypeUtils.getHumanizeTypeName(className), methodName, TypeUtils.getHumanizeTypeName(returnTypeName), insnsCapacity * 2, returnByteCodes.length); return null; } instruction.setOffsetOfDex(insnsOffset); //这里的MethodIndex对应method_ids区的索引 instruction.setMethodIndex(method.getMethodIndex()); //注意:这里是数组的大小 instruction.setInstructionDataSize(insnsCapacity * 2); byte[] byteCode = new byte[insnsCapacity * 2]; //写入nop指令 for (int i = 0; i < insnsCapacity; i++) { outRandomAccessFile.seek(insnsOffset + (i * 2)); byteCode[i * 2] = outRandomAccessFile.readByte(); byteCode[i * 2 + 1] = outRandomAccessFile.readByte(); outRandomAccessFile.seek(insnsOffset + (i * 2)); outRandomAccessFile.writeShort(0); } instruction.setInstructionsData(byteCode); outRandomAccessFile.seek(insnsOffset); //写出return语句 outRandomAccessFile.write(returnByteCodes); return instruction; }
0x3 shell模块
shell模块是函数抽取壳的主要逻辑,它的功能我们上面已经讲过。
(1) Hook函数
Hook函数时机最好要早点,dpt在_init
函数中开始进行一系列HOOK
extern "C" void _init(void) { dpt_hook(); }
Hook框架使用的Dobby,主要Hook两个函数:MapFileAtAddress和LoadMethod。
Hook MapFileAtAddress函数的目的是在我们加载dex能够修改dex的属性,让加载的dex可写,这样我们才能把字节码填回dex,有大佬详细的分析过,具体参考这篇文章。
void* MapFileAtAddressAddr = DobbySymbolResolver(GetArtLibPath(),MapFileAtAddress_Sym()); DobbyHook(MapFileAtAddressAddr, (void *) MapFileAtAddress28,(void **) &g_originMapFileAtAddress28);
Hook到了之后,给prot参数追加PROT_WRITE属性
void* MapFileAtAddress28(uint8_t* expected_ptr, size_t byte_count, int prot, int flags, int fd, off_t start, bool low_4gb, bool reuse, const char* filename, std::string* error_msg){ int new_prot = (prot | PROT_WRITE); if(nullptr != g_originMapFileAtAddress28) { return g_originMapFileAtAddress28(expected_ptr,byte_count,new_prot,flags,fd,start,low_4gb,reuse,filename,error_msg); } }
在Hook LoadMethod函数之前,我们需要了解LoadMethod函数流程。为什么是这个LoadMethod函数,其他函数是否可行?
当一个类被加载的时候,它的调用链是这样的(部分流程已省略):
ClassLoader.java::loadClass -> DexPathList.java::findClass -> DexFile.java::defineClass -> class_linker.cc::LoadClass -> class_linker.cc::LoadClassMembers -> class_linker.cc::LoadMethod
也就是说,当一个类被加载,它是会去调用LoadMethod函数的,我们看一下它的函数原型:
void ClassLinker::LoadMethod(const DexFile& dex_file, const ClassDataItemIterator& it, Handle<mirror::Class> klass, ArtMethod* dst);
这个函数太爆炸了,它有两个爆炸性的参数,DexFile和ClassDataItemIterator,我们可以从这个函数得到当前加载函数所在的DexFile结构和当前函数的一些信息,可以看一下ClassDataItemIterator结构:
class ClassDataItemIterator{ ...... // A decoded version of the method of a class_data_item struct ClassDataMethod { uint32_t method_idx_delta_; // delta of index into the method_ids array for MethodId uint32_t access_flags_; uint32_t code_off_; ClassDataMethod() : method_idx_delta_(0), access_flags_(0), code_off_(0) {} private: DISALLOW_COPY_AND_ASSIGN(ClassDataMethod); }; ClassDataMethod method_; // Read and decode a method from a class_data_item stream into method void ReadClassDataMethod(); const DexFile& dex_file_; size_t pos_; // integral number of items passed const uint8_t* ptr_pos_; // pointer into stream of class_data_item uint32_t last_idx_; // last read field or method index to apply delta to DISALLOW_IMPLICIT_CONSTRUCTORS(ClassDataItemIterator); };
其中最重要的字段就是code_off_
它的值是当前加载的函数的CodeItem相对于DexFile的偏移,当相应的函数被加载,我们就可以直接访问到它的CodeItem。其他函数是否也可以?在上面的流程中没有比LoadMethod更适合我们Hook的函数,所以它是最佳的Hook点。
Hook LoadMethod稍微复杂一些,倒不是Hook代码复杂,而是Hook触发后处理的代码比较复杂,我们要适配多个Android版本,每个版本LoadMethod函数的参数都可能有改变,幸运的是,LoadMethod改动也不是很大。那么,我们如何读取ClassDataItemIterator类中的code_off_
呢?比较直接的做法是计算偏移,然后在代码中维护一份偏移。不过这样的做法不易阅读很容易出错。dpt的做法是把ClassDataItemIterator类拷过来,然后将ClassDataItemIterator引用直接转换为我们自定义的ClassDataItemIterator引用,这样就可以方便的读取字段的值。
下面是LoadMethod被调用后做的操作,逻辑是读取存在map中的insns,然后将它们填回指定位置。
void LoadMethod(void *thiz, void *self, const void *dex_file, const void *it, const void *method, void *klass, void *dst) { if (g_originLoadMethod25 != nullptr || g_originLoadMethod28 != nullptr || g_originLoadMethod29 != nullptr) { uint32_t location_offset = getDexFileLocationOffset(); uint32_t begin_offset = getDataItemCodeItemOffset(); callOriginLoadMethod(thiz, self, dex_file, it, method, klass, dst); ClassDataItemReader *classDataItemReader = getClassDataItemReader(it,method); uint8_t **begin_ptr = (uint8_t **) ((uint8_t *) dex_file + begin_offset); uint8_t *begin = *begin_ptr; // vtable(4|8) + prev_fields_size std::string *location = (reinterpret_cast<std::string *>((uint8_t *) dex_file + location_offset)); if (location->find("base.apk") != std::string::npos) { //code_item_offset == 0说明是native方法或者没有代码 if (classDataItemReader->GetMethodCodeItemOffset() == 0) { DLOGW("native method? = %s code_item_offset = 0x%x", classDataItemReader->MemberIsNative() ? "true" : "false", classDataItemReader->GetMethodCodeItemOffset()); return; } uint16_t firstDvmCode = *((uint16_t*)(begin + classDataItemReader->GetMethodCodeItemOffset() + 16)); if(firstDvmCode != 0x0012 && firstDvmCode != 0x0016 && firstDvmCode != 0x000e){ NLOG("this method has code no need to patch"); return; } uint32_t dexSize = *((uint32_t*)(begin + 0x20)); int dexIndex = dexNumber(location); auto dexIt = dexMap.find(dexIndex - 1); if (dexIt != dexMap.end()) { auto dexMemIt = dexMemMap.find(dexIndex); if(dexMemIt == dexMemMap.end()){ changeDexProtect(begin,location->c_str(),dexSize,dexIndex); } auto codeItemMap = dexIt->second; int methodIdx = classDataItemReader->GetMemberIndex(); auto codeItemIt = codeItemMap->find(methodIdx); if (codeItemIt != codeItemMap->end()) { CodeItem* codeItem = codeItemIt->second; uint8_t *realCodeItemPtr = (uint8_t*)(begin + classDataItemReader->GetMethodCodeItemOffset() + 16); memcpy(realCodeItemPtr,codeItem->getInsns(),codeItem->getInsnsSize()); } } } } }
(2) 加载dex
其实dex在App启动的时候已经被加载过一次了,但是,我们为什么还要再加载一次?因为系统加载的dex是以只读方式加载的,我们没办法去修改那一部分的内存。而且App的dex加载早于我们Application的启动,这样,我们在代码根本没法感知到,所以我们要重新加载dex。
private ClassLoader loadDex(Context context){ String sourcePath = context.getApplicationInfo().sourceDir; String nativePath = context.getApplicationInfo().nativeLibraryDir; ShellClassLoader shellClassLoader = new ShellClassLoader(sourcePath,nativePath,ClassLoader.getSystemClassLoader()); return shellClassLoader; }
自定义的ClassLoader
public class ShellClassLoader extends PathClassLoader { private final String TAG = ShellClassLoader.class.getSimpleName(); public ShellClassLoader(String dexPath,ClassLoader classLoader) { super(dexPath,classLoader); } public ShellClassLoader(String dexPath, String librarySearchPath,ClassLoader classLoader) { super(dexPath, librarySearchPath, classLoader); } }
(3) 替换dexElements
这一步也非常重要,这一步的目的是使ClassLoader从我们新加载的dex文件中加载类。代码如下:
void mergeDexElements(JNIEnv* env,jclass klass,jobject oldClassLoader,jobject newClassLoader){ jclass BaseDexClassLoaderClass = env->FindClass("dalvik/system/BaseDexClassLoader"); jfieldID pathList = env->GetFieldID(BaseDexClassLoaderClass,"pathList","Ldalvik/system/DexPathList;"); jobject oldDexPathListObj = env->GetObjectField(oldClassLoader,pathList); if(env->ExceptionCheck() || nullptr == oldDexPathListObj ){ env->ExceptionClear(); DLOGW("mergeDexElements oldDexPathListObj get fail"); return; } jobject newDexPathListObj = env->GetObjectField(newClassLoader,pathList); if(env->ExceptionCheck() || nullptr == newDexPathListObj){ env->ExceptionClear(); DLOGW("mergeDexElements newDexPathListObj get fail"); return; } jclass DexPathListClass = env->FindClass("dalvik/system/DexPathList"); jfieldID dexElementField = env->GetFieldID(DexPathListClass,"dexElements","[Ldalvik/system/DexPathList$Element;"); jobjectArray newClassLoaderDexElements = static_cast<jobjectArray>(env->GetObjectField( newDexPathListObj, dexElementField)); if(env->ExceptionCheck() || nullptr == newClassLoaderDexElements){ env->ExceptionClear(); DLOGW("mergeDexElements new dexElements get fail"); return; } jobjectArray oldClassLoaderDexElements = static_cast<jobjectArray>(env->GetObjectField( oldDexPathListObj, dexElementField)); if(env->ExceptionCheck() || nullptr == oldClassLoaderDexElements){ env->ExceptionClear(); DLOGW("mergeDexElements old dexElements get fail"); return; } jint oldLen = env->GetArrayLength(oldClassLoaderDexElements); jint newLen = env->GetArrayLength(newClassLoaderDexElements); DLOGD("mergeDexElements oldlen = %d , newlen = %d",oldLen,newLen); jclass ElementClass = env->FindClass("dalvik/system/DexPathList$Element"); jobjectArray newElementArray = env->NewObjectArray(oldLen + newLen,ElementClass, nullptr); for(int i = 0;i < newLen;i++) { jobject elementObj = env->GetObjectArrayElement(newClassLoaderDexElements, i); env->SetObjectArrayElement(newElementArray,i,elementObj); } for(int i = newLen;i < oldLen + newLen;i++) { jobject elementObj = env->GetObjectArrayElement(oldClassLoaderDexElements, i - newLen); env->SetObjectArrayElement(newElementArray,i,elementObj); } env->SetObjectField(oldDexPathListObj, dexElementField,newElementArray); DLOGD("mergeDexElements success"); }
0x4 总结
做这个壳确实花了不少的时间,其中走过的弯路只有自己知道,不过还好做出来了。dpt未经过大量测试,后续发现问题再慢慢解决。