Unity3D实现简易五子棋源码
时间:2021-11-13 15:30:14|栏目:.NET代码|点击: 次
本文实例为大家分享了Unity3d简易五子棋源码,供大家参考,具体内容如下
对C#源码进行了改写简化:
using UnityEngine; using System.Collections; public class chess : MonoBehaviour { //四个锚点位置,用于计算棋子落点 public GameObject LeftTop; public GameObject RightTop; public GameObject LeftBottom; public GameObject RightBottom; //主摄像机 public Camera cam; //锚点在屏幕上的映射位置 Vector3 LTPos; Vector3 RTPos; Vector3 LBPos; Vector3 RBPos; Vector3 PointPos;//当前点选的位置 float gridWidth = 1; //棋盘网格宽度 float gridHeight = 1; //棋盘网格高度 float minGridDis; //网格宽和高中较小的一个 Vector2[,] chessPos; //存储棋盘上所有可以落子的位置 int[,] chessState; //存储棋盘位置上的落子状态 enum turn { black, white }; turn chessTurn; //落子顺序 public Texture2D white; //白棋子 public Texture2D black; //黑棋子 public Texture2D blackWin; //白子获胜提示图 public Texture2D whiteWin; //黑子获胜提示图 int winner = 0; //获胜方,1为黑子,-1为白子 bool isPlaying = true; //是否处于对弈状态 void Start() { chessPos = new Vector2[15, 15]; chessState = new int[17, 16];/*原来定义是new int[15, 15],这里将原来数组chessState上、下和右边各加一排数据, 也就相当于在棋盘的上、下和右边各填加一排隐形的棋道。原因后面解释*/ chessTurn = turn.black; //计算锚点位置 LTPos = cam.WorldToScreenPoint(LeftTop.transform.position); RTPos = cam.WorldToScreenPoint(RightTop.transform.position); LBPos = cam.WorldToScreenPoint(LeftBottom.transform.position); RBPos = cam.WorldToScreenPoint(RightBottom.transform.position); //计算网格宽度 gridWidth = (RTPos.x - LTPos.x) / 14; gridHeight = (LTPos.y - LBPos.y) / 14; minGridDis = gridWidth < gridHeight ? gridWidth : gridHeight; //计算落子点位置 for (int i = 0; i < 15; i++) { for (int j = 0; j < 15; j++) { chessPos[i, j] = new Vector2(LBPos.x + gridWidth * j, LBPos.y + gridHeight * i);//这里和源程序定义稍有不同,这里i定位行,j为列 } } } void Update() { //检测鼠标输入并确定落子状态 if (isPlaying && Input.GetMouseButtonDown(0)) { PointPos = Input.mousePosition; for (int i = 0; i < 15; i++) { for (int j = 0; j < 15; j++) { //找到最接近鼠标点击位置的落子点,如果空则落子 if (Dis(PointPos, chessPos[i, j]) < minGridDis / 2 && chessState[i + 1, j] == 0)/*这里chessState行要加1, 因为上、下和右边各多加了一排,要空出来,chessPos的i行对应chessState的i+1行*/ { //根据下棋顺序确定落子颜色 chessState[i + 1, j] = chessTurn == turn.black ? 1 : -1;//同理 //落子成功,更换下棋顺序 chessTurn = chessTurn == turn.black ? turn.white : turn.black; } } } //调用判断函数,确定是否有获胜方 int re = result(); if (re == 1) { Debug.Log("黑棋胜"); winner = 1; isPlaying = false; } else if (re == -1) { Debug.Log("白棋胜"); winner = -1; isPlaying = false; } } //按下空格重新开始游戏 if (Input.GetKeyDown(KeyCode.Space)) { for (int i = 0; i < 15; i++) { for (int j = 0; j < 15; j++) { chessState[i + 1, j] = 0;//同理 } } isPlaying = true; chessTurn = turn.black; winner = 0; } } //计算平面距离函数 float Dis(Vector3 mPos, Vector2 gridPos) { return Mathf.Sqrt(Mathf.Pow(mPos.x - gridPos.x, 2) + Mathf.Pow(mPos.y - gridPos.y, 2)); } void OnGUI() { //绘制棋子 for (int i = 0; i < 15; i++) { for (int j = 0; j < 15; j++) { if (chessState[i + 1, j] == 1)//同理 { GUI.DrawTexture(new Rect(chessPos[i, j].x - gridWidth / 2, Screen.height - chessPos[i, j].y - gridHeight / 2, gridWidth, gridHeight), black); } if (chessState[i + 1, j] == -1)//同理 { GUI.DrawTexture(new Rect(chessPos[i, j].x - gridWidth / 2, Screen.height - chessPos[i, j].y - gridHeight / 2, gridWidth, gridHeight), white); } } } //根据获胜状态,弹出相应的胜利图片 if (winner == 1) { GUI.DrawTexture(new Rect(Screen.width * 0.25f, Screen.height * 0.25f, Screen.width * 0.5f, Screen.height * 0.25f), blackWin); } if (winner == -1) GUI.DrawTexture(new Rect(Screen.width * 0.25f, Screen.height * 0.25f, Screen.width * 0.5f, Screen.height * 0.25f), whiteWin); } //改写result函数 /*解释:C语言中,这样的表达式:chessState[i]&&chessState[i+1]&&chessState[i+2]&&chessState[i+3]&&chessState[i+4],如果 * chessState[i]为False,则不管B是真是假或者是异常都不会运行,利用这一点,在chessState的右边、上边和下边各加一行为0的数据, * 这样在判断连续五个棋子的状态时,就不用担心chessState数组的索引值超出范围。例如:chessState[i+4]的索引值i+4刚好超出范围, * 通过在原来数组chessState的上、下和右边个添加一排为0的数,这样chessState[i+3]==0,于是就可以避免引起异常,从而简化代码*/ int result() { int flag = 0; if (chessTurn == turn.white) { for (int i = 1; i <= 15; i++)//这里的i从1开始 { for (int j = 0; j <= 14; j++)//j不用变 { if ((chessState[i, j] == 1 && chessState[i, j + 1] == 1 && chessState[i, j + 2] == 1 && chessState[i, j + 3] == 1 && chessState[i, j + 4] == 1)//向右横向 || (chessState[i, j] == 1 && chessState[i + 1, j] == 1 && chessState[i + 2, j] == 1 && chessState[i + 3, j] == 1 && chessState[i + 4, j] == 1)//向上横向 || (chessState[i, j] == 1 && chessState[i + 1, j + 1] == 1 && chessState[i + 2, j + 2] == 1 && chessState[i + 3, j + 3] == 1 && chessState[i + 4, j + 4] == 1)//向右上斜向 || (chessState[i, j] == 1 && chessState[i - 1, j + 1] == 1 && chessState[i - 2, j + 2] == 1 && chessState[i - 3, j + 3] == 1 && chessState[i - 4, j + 4] == 1))//向右下斜向 { flag = 1; } } } } else if (chessTurn == turn.black) { for (int i = 1; i <= 15; i++)//这里的i从1开始 { for (int j = 0; j <= 14; j++) { if ((chessState[i, j] == -1 && chessState[i, j + 1] == -1 && chessState[i, j + 2] == -1 && chessState[i, j + 3] == -1 && chessState[i, j + 4] == -1) || (chessState[i, j] == -1 && chessState[i + 1, j] == -1 && chessState[i + 2, j] == -1 && chessState[i + 3, j] == -1 && chessState[i + 4, j] == -1) || (chessState[i, j] == -1 && chessState[i + 1, j + 1] == -1 && chessState[i + 2, j + 2] == -1 && chessState[i + 3, j + 3] == -1 && chessState[i + 4, j + 4] == -1) || (chessState[i, j] == -1 && chessState[i - 1, j + 1] == -1 && chessState[i - 2, j + 2] == -1 && chessState[i - 3, j + 3] == -1 && chessState[i - 4, j + 4] == -1)) { flag = -1; } } } } return flag; } }