android线程消息机制之Handler详解
android线程消息机制主要由Handler,Looper,Message和MessageQuene四个部分组成。平常在开发中,我们常用来在子线程中通知主线程来更新,其实整个安卓生命周期的驱动都是通过Handler(ActivityThread.H)来实现的。
首先我们先介绍这四个类的作用:
Handler:消息的发送者。负责将Message消息发送到MessageQueue中。以及通过Runnable,Callback或者handleMessage()来实现消息的回调处理
Looper:是消息的循环处理器,它负责从MessageQueue中取出Message对象进行处理。(Looper含有MessageQueue的引用)
Message:是消息载体,通过target来指向handler的引用。通过object来包含业务逻辑数据。其中MessagePool为消息池,用于回收空闲的Message对象的。
MessageQueue:消息队列,负责维护待处理的消息对象。
通过上面的图,我们可以比较清楚地知道他们的作用以及关系。接下来,我们从源码角度来分析这种关系是如何建立的。
public Handler(Looper looper, Callback callback, boolean async) { mLooper = looper; mQueue = looper.mQueue; mCallback = callback; mAsynchronous = async; }
hander的其它构造方法可以自己去查看,通过这个构造方法,我们知道,handler持有MessageQueue的引用。所以可以方便地将Message加入到队列中去。
通过源码我们发现,sendMessage->sendMessageDelayed->sendMessageAtTime->enqueueMessage
public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); }
都是通过enqueueMessage将message将加入到MessageQueue中。
接下来,我们看Message是如何构造的。通过Message的构造方法。
public static Message obtain() { synchronized (sPoolSync) { if (sPool != null) { Message m = sPool; sPool = m.next; m.next = null; m.flags = 0; // clear in-use flag sPoolSize--; return m; } } return new Message(); }
我们看到,Message是通过obtain的静态方法从消息池sPool中拿到的。这样可以做到消息的复用。
public static Message obtain(Handler h) { Message m = obtain(); m.target = h; return m; }
其中有一个重载方法中m.target = h;这段代码非常重要,便于后面找到消息的目标handler进行处理。
接下来,我们来看Looper。我们知道Looper通过过Looper.loop来进入循环的,而循环是通过线程的run方法的驱动的。
首先我们知道,我们在创建Handler的时候,都没有去创建Looper,那么Looper哪里来的呢?
public Handler(Callback callback, boolean async) { ... mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; }
再看看Looper.myLooper()
public static @Nullable Looper myLooper() { return sThreadLocal.get(); }
ThreadLocal是线程创建线程局部变量的类。表示此变量只属于当前线程。
public T get() { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) { ThreadLocalMap.Entry e = map.getEntry(this); if (e != null) { @SuppressWarnings("unchecked") T result = (T)e.value; return result; } } return setInitialValue(); }
我们看到了sThreadLocal.get()的方法实际是取当前线程中的Looper对象。
那么我们主线程的Looper到底在哪里创建的呢?
而我们清楚地知道,如果在子线程中创建handler调用,则需要使用Looper.prepare方法。
private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); }
我们看到此方法中,如果此线程中没有Looper对象,则创建一个Looper对象。接下来我们在源码中看到一个熟悉的方法。
public static void prepareMainLooper() { prepare(false); synchronized (Looper.class) { if (sMainLooper != null) { throw new IllegalStateException("The main Looper has already been prepared."); } sMainLooper = myLooper(); } }
此方法单独的创建了一个sMainLooper用于主线程的Looper。这个prepareMainLooper到底在哪里调用呢?
高过引用指向发现,我们在ActivityThread.main()方法中发现
public static void main(String[] args) { ... Looper.prepareMainLooper(); ActivityThread thread = new ActivityThread(); thread.attach(false); if (sMainThreadHandler == null) { sMainThreadHandler = thread.getHandler(); } if (false) { Looper.myLooper().setMessageLogging(new LogPrinter(Log.DEBUG, "ActivityThread")); } // End of event ActivityThreadMain. Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER); Looper.loop(); throw new RuntimeException("Main thread loop unexpectedly exited"); }
而ActivityThread.main()是程序的入口方法。这样我们就非常清楚了,主线程的Looper在程序的启动过程中就已经创建并循环。
那么如果在子线程中创建Looper该如何正确调用呢?
class LooperThread extends Thread { public Handler mHandler; public void run() { Looper.prepare(); mHandler = new Handler() { public void handleMessage(Message msg) { // process incoming messages here } }; Looper.loop(); } }
接下来,我们需要看下Looper.loop()的执行方法
public static void loop() { final Looper me = myLooper();//拿到当前线程的looper if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue;//拿到当前looper的消息队列 // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); for (;;) {//死循环遍历消息体。如果为null,则休眠。 Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger final Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs; final long traceTag = me.mTraceTag; if (traceTag != 0 && Trace.isTagEnabled(traceTag)) { Trace.traceBegin(traceTag, msg.target.getTraceName(msg)); } final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis(); final long end; try { msg.target.dispatchMessage(msg);//此处是真正的分发消息。此处的target即是handler对象 end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis(); } finally { if (traceTag != 0) { Trace.traceEnd(traceTag); } } if (slowDispatchThresholdMs > 0) { final long time = end - start; if (time > slowDispatchThresholdMs) { Slog.w(TAG, "Dispatch took " + time + "ms on " + Thread.currentThread().getName() + ", h=" + msg.target + " cb=" + msg.callback + " msg=" + msg.what); } } if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycleUnchecked(); } }
最后我们看下dispatchMessage的处理方法。
public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } }
我们看到,dispatchMessage是优化处理msg.callback,然后就是实现的Callback接口,最后才是handleMessage方法。
重点说明:
1、handler在实例化的时候,持有Looper的引用。是通过ThreadLocal与Handler进行关联的。
2、Message在实例化的过程中,通过target 持有Handler的引用。
3、通常一个线程对应一个Looper.一个Looper可以属于多个Handler。
栏 目:Android代码
下一篇:Android GestureDetector用户手势检测实例讲解
本文地址:http://www.codeinn.net/misctech/154886.html