位置:首页 > > Python3开发网络爬虫(2)

Python3开发网络爬虫(2)

上一回,我学会了

  1. 用伪代码写出爬虫的主要框架;
  2. 用Python的urllib.request库抓取指定url的页面;
  3. 用Python的urllib.parse库对普通字符串转符合url的字符串。

这一回,开始用Python将伪代码中的所有部分实现。由于文章的标题就是”零基础”,因此会先把用到的两种数据结构队列集合介绍一下。而对于”正则表达式“部分,限于篇幅不能介绍,但给出我比较喜欢的几个参考资料。

Python的队列

在爬虫程序中, 用到了广度优先搜索(BFS)算法. 这个算法用到的数据结构就是队列.

Python的List功能已经足够完成队列的功能, 可以用 append() 来向队尾添加元素, 可以用类似数组的方式来获取队首元素, 可以用 pop(0) 来弹出队首元素. 但是List用来完成队列功能其实是低效率的, 因为List在队首使用 pop(0) 和 insert() 都是效率比较低的, Python官方建议使用collection.deque来高效的完成队列任务.

from collections import deque
queue = deque(["Eric", "John", "Michael"])
queue.append("Terry")           # Terry 入队
queue.append("Graham")          # Graham 入队
queue.popleft()                 # 队首元素出队
#输出: 'Eric'
queue.popleft()                 # 队首元素出队
#输出: 'John'
queue                           # 队列中剩下的元素
#输出: deque(['Michael', 'Terry', 'Graham'])

(以上例子引用自官方文档)

Python的集合

在爬虫程序中, 为了不重复爬那些已经爬过的网站, 我们需要把爬过的页面的url放进集合中, 在每一次要爬某一个url之前, 先看看集合里面是否已经存在. 如果已经存在, 我们就跳过这个url; 如果不存在, 我们先把url放入集合中, 然后再去爬这个页面.

Python提供了set这种数据结构. set是一种无序的, 不包含重复元素的结构. 一般用来测试是否已经包含了某元素, 或者用来对众多元素们去重. 与数学中的集合论同样, 他支持的运算有交, 并, 差, 对称差.

创建一个set可以用 set() 函数或者花括号 {} . 但是创建一个空集是不能使用一个花括号的, 只能用 set() 函数. 因为一个空的花括号创建的是一个字典数据结构. 以下同样是Python官网提供的示例.

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket)                      # 这里演示的是去重功能
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket                 # 快速判断元素是否在集合内
True
>>> 'crabgrass' in basket
False
 
>>> # 下面展示两个集合间的运算.
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a                                  
{'a', 'r', 'b', 'c', 'd'}
>>> a - b                              # 集合a中包含元素
{'r', 'd', 'b'}
>>> a | b                              # 集合a或b中包含的所有元素
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b                              # 集合a和b中都包含了的元素
{'a', 'c'}
>>> a ^ b                              # 不同时包含于a和b的元素
{'r', 'd', 'b', 'm', 'z', 'l'

其实我们只是用到其中的快速判断元素是否在集合内的功能, 以及集合的并运算.

Python的正则表达式

在爬虫程序中, 爬回来的数据是一个字符串, 字符串的内容是页面的html代码. 我们要从字符串中, 提取出页面提到过的所有url. 这就要求爬虫程序要有简单的字符串处理能力, 而正则表达式可以很轻松的完成这一任务.

参考资料

虽然正则表达式功能异常强大, 很多实际上用的规则也非常巧妙, 真正熟练正则表达式需要比较长的实践锻炼. 不过我们只需要掌握如何使用正则表达式在一个字符串中, 把所有的url都找出来, 就可以了. 如果实在想要跳过这一部分, 可以在网上找到很多现成的匹配url的表达式, 拿来用即可.

 

Python网络爬虫Ver 1.0 alpha

有了以上铺垫, 终于可以开始写真正的爬虫了. 我选择的入口地址是Fenng叔的Startup News, 我想Fenng叔刚刚拿到7000万美金融资, 不会介意大家的爬虫去光临他家的小站吧. 这个爬虫虽然可以勉强运行起来, 但是由于缺乏异常处理, 只能爬些静态页面, 也不会分辨什么是静态什么是动态, 碰到什么情况应该跳过, 所以工作一会儿就要败下阵来.

import re
import urllib.request
import urllib
 
from collections import deque
 
queue = deque()
visited = set()
 
url = 'http://news.dbanotes.net'  # 入口页面, 可以换成别的
 
queue.append(url)
cnt = 0
 
while queue:
  url = queue.popleft()  # 队首元素出队
  visited |= {url}  # 标记为已访问
 
  print('已经抓取: ' + str(cnt) + '   正在抓取 <---  ' + url)
  cnt += 1
  urlop = urllib.request.urlopen(url)
  if 'html' not in urlop.getheader('Content-Type'):
    continue
 
  # 避免程序异常中止, 用try..catch处理异常
  try:
    data = urlop.read().decode('utf-8')
  except:
    continue
 
  # 正则表达式提取页面中所有队列, 并判断是否已经访问过, 然后加入待爬队列
  linkre = re.compile('href=\"(.+?)\"')
  for x in linkre.findall(data):
    if 'http' in x and x not in visited:
      queue.append(x)
      print('加入队列 --->  ' + x)

这个版本的爬虫使用的正则表达式是

'href=\"(.+?)\"'

所以会把那些.ico或者.jpg的链接都爬下来. 这样read()了之后碰上decode(‘utf-8′)就要抛出异常. 因此我们用getheader()函数来获取抓取到的文件类型, 是html再继续分析其中的链接.

if 'html' not in urlop.getheader('Content-Type'):
    continue

但是即使是这样, 依然有些网站运行decode()会异常. 因此我们把decode()函数用try..catch语句包围住, 这样他就不会导致程序中止. 程序运行效果图如下:

webbugv1ahpha

爬虫是可以工作了, 但是在碰到连不上的链接的时候, 它并不会超时跳过. 而且爬到的内容并没有进行处理, 没有获取对我们有价值的信息, 也没有保存到本地. 下次我们可以完善这个alpha版本.