Hadoop大数据解决方案
传统的企业方法
在这种方法中,一个企业将有一个计算机存储和处理大数据。对于存储而言,程序员会自己选择的数据库厂商,如Oracle,IBM等的帮助下完成,用户交互使用应用程序进而获取并处理数据存储和分析。
局限性
这种方式能完美地处理那些可以由标准的数据库服务器来存储,或直至处理数据的处理器的限制少的大量数据应用程序。但是,当涉及到处理大量的可伸缩数据,这是一个繁忙的任务,只能通过单一的数据库瓶颈来处理这些数据。
谷歌的解决方案
使用一种称为MapReduce的算法谷歌解决了这个问题。这个算法将任务分成小份,并将它们分配到多台计算机,并且从这些机器收集结果并综合,形成了结果数据集。
Hadoop
使用谷歌提供的解决方案,Doug Cutting和他的团队开发了一个开源项目叫做HADOOP。
Hadoop使用的MapReduce算法运行,其中数据在使用其他并行处理的应用程序。总之,Hadoop用于开发可以执行完整的统计分析大数据的应用程序。
本站文章除注明转载外,均为本站原创或编译
欢迎任何形式的转载,但请务必注明出处,尊重他人劳动共创优秀实例教程
转载请注明:文章转载自:代码驿站 [http:/www.codeinn.net]
本文标题:Hadoop大数据解决方案
本文地址:http://www.codeinn.net/hadoop/450.html
欢迎任何形式的转载,但请务必注明出处,尊重他人劳动共创优秀实例教程
转载请注明:文章转载自:代码驿站 [http:/www.codeinn.net]
本文标题:Hadoop大数据解决方案
本文地址:http://www.codeinn.net/hadoop/450.html